Я начинаю баловаться с использованием glmnetс LASSO регрессией , где мой результат представляет интерес дихотомический. Я создал небольшой фрейм данных ниже: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, 0.67, 0.91,...
78
Пример: регрессия LASSO с использованием glmnet для двоичного результата
r
self-study
lasso
regression
interpretation
anova
statistical-significance
survey
conditional-probability
independence
naive-bayes
graphical-model
r
time-series
forecasting
arima
r
forecasting
exponential-smoothing
bootstrap
outliers
r
regression
poisson-distribution
zero-inflation
genetic-algorithms
machine-learning
feature-selection
cart
categorical-data
interpretation
descriptive-statistics
variance
multivariate-analysis
covariance-matrix
r
data-visualization
generalized-linear-model
binomial
proportion
pca
matlab
svd
time-series
correlation
spss
arima
chi-squared
curve-fitting
text-mining
zipf
probability
categorical-data
distance
group-differences
bhattacharyya
regression
variance
mean
data-visualization
variance
clustering
r
standard-error
association-measure
somers-d
normal-distribution
integral
numerical-integration
bayesian
clustering
python
pymc
nonparametric-bayes
machine-learning
svm
kernel-trick
hyperparameter
poisson-distribution
mean
continuous-data
univariate
missing-data
dag
python
likelihood
dirichlet-distribution
r
anova
hypothesis-testing
statistical-significance
p-value
rating
data-imputation
censoring
threshold