Вопросы с тегом «optimization»

Используйте этот тег для любого использования оптимизации в статистике.

132
Почему метод Ньютона не широко используется в машинном обучении?

Это то, что беспокоило меня какое-то время, и я не смог найти удовлетворительных ответов в Интернете, так что вот так: После рассмотрения ряда лекций по выпуклой оптимизации метод Ньютона, по-видимому, является гораздо более совершенным алгоритмом, чем градиентный спуск, для поиска глобально...

101
Пакетный градиентный спуск против стохастического градиентного спуска

Предположим, у нас есть некоторый обучающий набор ( х( я ), у( я ))(x(i),y(i))(x_{(i)}, y_{(i)}) для я = 1 , … , мi=1,…,mi = 1, \dots, m . Также предположим, что мы запускаем некоторый тип контролируемого алгоритма обучения на тренировочном наборе. Гипотезы представлены в виде часθ( х( я )) = θ0+...

94
Можно ли обучить нейронную сеть без обратного распространения?

Многие книги и учебные пособия по нейронной сети тратят много времени на алгоритм обратного распространения, который по сути является инструментом для вычисления градиента. Давайте предположим, что мы строим модель с ~ 10K параметров / весов. Можно ли запустить оптимизацию, используя некоторые...

82
функция активации tanh против функции активации сигмоида

Функция активации tanh: t a n h ( x ) = 2 ⋅ σ( 2 х ) - 1tanh(x)=2⋅σ(2x)−1tanh \left( x \right) = 2 \cdot \sigma \left( 2 x \right) - 1 Где , сигмовидная функция, определяется как: \ sigma (x) = \ frac {e ^ x} {1 + e ^ x} .σ ( x ) = e xσ( х )σ(x)\sigma(x) σ( х ) = еИкс1 + еИксσ(x)=ex1+ex\sigma(x) =...

66
Зачем оптимизировать максимальную логарифмическую вероятность вместо вероятности

В большинстве задач машинного обучения, где вы можете сформулировать некоторую вероятность которая должна быть максимизирована, мы фактически оптимизировали бы логарифмическую вероятность вместо вероятности для некоторых параметров . Например, в обучении с максимальным правдоподобием, это, как...

59
Оптимизация, когда функция стоимости медленна для оценки

Градиентный спуск и многие другие методы полезны для нахождения локальных минимумов в функциях стоимости. Они могут быть эффективными, когда функцию стоимости можно быстро оценить в каждой точке, численно или аналитически. У меня есть то, что мне кажется необычной ситуацией. Каждая оценка моей...

54
Каково интуитивное объяснение того, как PCA превращается из геометрической задачи (с расстояниями) в задачу линейной алгебры (с собственными векторами)?

Я много читал о PCA, включая различные учебники и вопросы (такие как этот , этот , этот и этот ). Геометрическая проблема, которую пытается оптимизировать PCA, мне ясна: PCA пытается найти первый главный компонент, сводя к минимуму ошибку реконструкции (проекции), которая одновременно максимизирует...

48
В чем разница между градиентным спуском на основе импульса и ускоренным градиентным спуском Нестерова?

Таким образом, градиентный спуск на основе импульса работает следующим образом: v=self.momentum∗m−lr∗gv=self.momentum∗m−lr∗gv=self.momentum*m-lr*g где - это предыдущее обновление веса, а - текущий градиент относительно параметров , - скорость обучения, а - постоянная...

46
Понимание «почти все локальные минимумы имеют значение функции, очень похожее на глобальный оптимум»

В недавнем сообщении в блоге Rong Ge было сказано, что: Считается, что для многих задач, включая изучение глубинных сетей, почти все локальные минимумы имеют очень близкое значение функции к глобальному оптимуму, и, следовательно, нахождение локального минимума достаточно хорошо. Откуда эта...

45
Как работает метод стохастического градиентного спуска Адама?

Я знаком с основными алгоритмами градиентного спуска для обучения нейронных сетей. Я прочитал статью с предложением Адама: АДАМ: МЕТОД СТОХАСТИЧЕСКОЙ ОПТИМИЗАЦИИ . Хотя у меня определенно есть некоторые идеи (по крайней мере), статья кажется мне слишком высокой в ​​целом. Например, функция...

42
Нейронные сети: импульс изменения веса и снижение веса

Momentum используется для уменьшения колебаний веса в последовательных итерациях:αα\alpha Е(ш)шηΔ ωя( t + 1 ) = - η∂Е∂веся+ α Δ ωя( т ) ,Δωя(T+1)знак равно-η∂Е∂веся+αΔωя(T),\Delta\omega_i(t+1) = - \eta\frac{\partial E}{\partial w_i} + \alpha \Delta \omega_i(t), где - функция ошибки, - вектор весов,...

41
Практическая оптимизация гиперпараметров: случайный поиск по сетке

В настоящее время я прохожу случайный поиск по гиперпараметрической оптимизации Bengio и Bergsta [1], где авторы утверждают, что случайный поиск более эффективен, чем поиск по сетке, для достижения примерно одинаковой производительности. Мой вопрос: согласны ли здесь люди с этим утверждением? В...

37
Почему glmer не достигает максимальной вероятности (что подтверждается применением дополнительной общей оптимизации)?

Численно получить MLE из GLMM сложно, и на практике, я знаю, мы не должны использовать оптимизацию методом грубой силы (например, используя optimпростой способ). Но для моих собственных образовательных целей я хочу попробовать, чтобы убедиться, что я правильно понимаю модель (см. Код ниже). Я...

37
Сравнение SVM и логистической регрессии

Может кто-нибудь подсказать, когда выбрать SVM или LR? Я хочу понять интуицию, лежащую в основе различий между критериями оптимизации изучения гиперплоскости двух, где соответствующие цели заключаются в следующем: SVM: попытаться максимизировать разницу между ближайшими векторами поддержки LR:...

34
Можете ли вы тренировать алгоритмы машинного обучения, используя CV / Bootstrap?

Этот вопрос может быть слишком открытым, чтобы получить окончательный ответ, но, надеюсь, нет. Алгоритмы машинного обучения, такие как SVM, GBM, Random Forest и т. Д., Как правило, имеют некоторые свободные параметры, которые, помимо некоторых правил большого пальца, необходимо настраивать для...

32
Зачем использовать регуляризацию в полиномиальной регрессии вместо понижения степени?

При выполнении регрессии, например, два гиперпараметра, которые нужно выбрать, часто являются емкостью функции (например, наибольшим показателем многочлена) и величиной регуляризации. Что меня смущает, так это почему бы просто не выбрать функцию с низкой пропускной способностью, а затем...

32
Целевая функция PCA: какова связь между максимизацией дисперсии и минимизацией ошибки?

Алгоритм PCA может быть сформулирован в терминах корреляционной матрицы (предположим, что данные уже нормализованы, и мы рассматриваем только проекцию на первый ПК). Целевая функция может быть записана как:XXX maxw(Xw)T(Xw)s.t.wTw=1.maxw(Xw)T(Xw)s.t.wTw=1. \max_w (Xw)^T(Xw)\; \: \text{s.t.} \:...

29
Почему бы не использовать третью производную для численной оптимизации?

Если гессианы так хороши для оптимизации (см., Например , метод Ньютона ), зачем останавливаться на достигнутом? Давайте использовать третий, четвертый, пятый и шестой производные? Почему бы...

28
Вычисление повторяемости эффектов по модели Лмера

Я только что наткнулся на эту статью , в которой описывается, как вычислить повторяемость (или надежность, или внутриклассовую корреляцию) измерения с помощью моделирования смешанных эффектов. Код R будет: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc =...

28
Приближение функции потерь XGBoost с расширением Тейлора

В качестве примера возьмем целевую функцию модели XGBoost на -й итерации:ttt L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) где - функция потерь, - выходной файл ', а - регуляризация....