Недавно я читал о глубоком обучении, и я запутался в терминах (или, скажем, технологиях). В чем разница между Сверточные нейронные сети (CNN), Ограниченные машины Больцмана (RBM) и Авто-кодеры?...
Сверточные нейронные сети - это тип нейронной сети, в которой существуют только подмножества возможных соединений между слоями для создания перекрывающихся областей. Они обычно используются для визуальных задач.
Недавно я читал о глубоком обучении, и я запутался в терминах (или, скажем, технологиях). В чем разница между Сверточные нейронные сети (CNN), Ограниченные машины Больцмана (RBM) и Авто-кодеры?...
В настоящее время я занимаюсь учебником по углубленному изучению Udacity. В уроке 3 они говорят о свертке 1x1. Эта свертка 1x1 используется в начальном модуле Google. У меня проблемы с пониманием, что такое свертка 1x1. Я также видел этот пост от Янн Лекун. Может ли кто-нибудь любезно объяснить это...
В последние годы сверточные нейронные сети (или, возможно, глубокие нейронные сети в целом) стали глубже и глубже: современные сети переходят от 7 уровней ( AlexNet ) до 1000 слоев ( остаточных сетей) в пространстве 4 года. Причиной повышения производительности в более глубокой сети является то,...
Может кто-нибудь объяснить, что такое глобальный уровень максимального пула и почему и когда мы используем его для обучения нейронной сети. Есть ли у них какое-либо преимущество перед обычным максимальным слоем...
В последние годы сверточные нейронные сети (CNN) стали современным средством распознавания объектов в компьютерном зрении. Как правило, CNN состоит из нескольких сверточных слоев, за которыми следуют два полностью связанных слоя. Интуиция в этом заключается в том, что сверточные слои изучают лучшее...
Я пытаюсь понять сверточную часть сверточных нейронных сетей. Глядя на следующий рисунок: У меня нет проблем с пониманием первого слоя свертки, где у нас есть 4 разных ядра (размером ), которые мы сворачиваем с входным изображением для получения 4 карт характеристик.к × кК×Кk \times k Что я не...
Я обнаружил, что Imagenet и другие крупные CNN используют слои нормализации локального отклика. Однако я не могу найти столько информации о них. Насколько они важны и когда их следует использовать? С http://caffe.berkeleyvision.org/tutorial/layers.html#data-layers : «Уровень нормализации локального...
У меня нет компьютерного зрения, но когда я читаю некоторые статьи и статьи, связанные с обработкой изображений и сверточными нейронными сетями, я постоянно сталкиваюсь с термином translation invarianceили translation invariant. Или я много читал, что обеспечивает операция свертки translation...
В чем разница между терминами «ядро» и «фильтр» в контексте сверточных нейронных
Я создаю сверточную нейронную сеть (CNN), где у меня есть сверточный слой, за которым следует слой пула, и я хочу применить выпадение для уменьшения переобучения. У меня такое чувство, что слой удаления должен быть применен после слоя объединения, но у меня нет ничего, чтобы поддержать это. Где...
Кто-нибудь видел какую-нибудь литературу по предварительной подготовке в глубокой сверточной нейронной сети? Я видел только неконтролируемую предварительную подготовку в автоэнкодере или ограниченных машинах...
Я работал над проблемой регрессии, когда входной сигнал представляет собой изображение, а метка представляет собой непрерывное значение между 80 и 350. Изображения имеют некоторые химические вещества после реакции. Цвет, который получается, указывает концентрацию другого химического вещества,...
Введение Фон Внутри сверточной нейронной сети мы обычно имеем общую структуру / поток, который выглядит следующим образом: входное изображение (т.е. 2D вектор x) (1-й сверточный слой (Conv1) начинается здесь ...) свертывать набор фильтров ( w1) вдоль двумерного изображения (т. е. делать z1 = w1*x...
Я читал статью Классификация ImageNet с глубокими сверточными нейронными сетями, и в разделе 3 они объясняли архитектуру своей сверточной нейронной сети и объясняли, как они предпочитают использовать: ненасыщенная нелинейность f(x)=max(0,x).f(x)=max(0,x).f(x) = max(0, x). потому что это было...
Мне не ясна причина, по которой мы нормализуем изображение для CNN (image - mean_image)?
Я объясню мою проблему на примере. Предположим, вы хотите предсказать доход человека с учетом некоторых атрибутов: {Возраст, Пол, Страна, Регион, Город}. У вас есть тренировочный набор данных, как так train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4,...
Я обучаю простую нейронную сеть на наборе данных CIFAR10. Через некоторое время потери валидации начали увеличиваться, а точность валидации также увеличивается. Потери и точность испытаний продолжают улучшаться. Как это возможно? Кажется, что если потери при проверке возрастают, точность должна...
Когда я использую GAM, он дает мне остаточный DF, (последняя строка в коде). Что это значит? Выходя за рамки примера GAM, в общем, может ли число степеней свободы быть нецелым числом?26,626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data =...
Я хочу использовать глубокое обучение в своем проекте. Я просмотрел пару статей, и у меня возник вопрос: есть ли разница между нейронной сеткой свертки и глубоким обучением? Являются ли эти вещи одинаковыми или имеют какие-то существенные различия, и что...
Мне было интересно, почему так важно иметь принципиальное / теоретическое машинное обучение? С личной точки зрения, как человек, я могу понять, почему принципиальное машинное обучение было бы важно: людям нравится понимать, что они делают, мы находим красоту и удовлетворение от понимания. с...