Вопросы с тегом «forecasting»

9
Какую модель можно использовать, когда допущение о постоянной дисперсии нарушается?

Поскольку мы не можем соответствовать модели ARIMA, когда допущение о постоянной дисперсии нарушается, какую модель можно использовать для соответствия одномерным временным...

9
Как сравнить наблюдаемые и ожидаемые события?

Предположим, у меня есть одна выборка частот из 4 возможных событий: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 и у меня есть ожидаемые вероятности того, что мои события произойдут: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 С суммой наблюдаемых частот моих четырех событий (18) я могу рассчитать ожидаемые частоты...

9
Прогноз ARIMA с сезонностью и трендом, странный результат

Поскольку я перехожу к прогнозированию с использованием моделей ARIMA, я пытаюсь понять, как можно улучшить прогноз на основе соответствия ARIMA сезонности и отклонениям. Мои данные представляют собой следующие временные ряды (более 3 лет, с явной тенденцией к росту и видимой сезонностью, которая,...

9
Уникальная (?) Идея для прогнозирования продаж

Я работаю над разработкой модели для прогнозирования общих продаж продукта. У меня есть около полутора лет данных о бронировании, поэтому я могу провести стандартный анализ временных рядов. Однако у меня также есть много данных о каждой «возможности» (потенциальной продаже), которая была либо...

9
Расчет точности прогноза

Мы используем STL (R реализация) для прогнозирования данных временных рядов. Каждый день мы запускаем ежедневные прогнозы. Мы хотели бы сравнить прогнозные значения с реальными значениями и определить среднее отклонение. Например, мы запустили прогноз на завтра и получили прогнозные баллы, мы...

9
Передаточная функция в моделях прогнозирования - интерпретация

Я занимаюсь моделированием ARIMA, дополненным экзогенными переменными для целей рекламного моделирования, и мне трудно объяснить это бизнес-пользователям. В некоторых случаях программные пакеты заканчиваются простой передаточной функцией, то есть параметром * Exogenous Variable. В этом случае...

9
Как интерпретировать и делать прогнозирование с использованием пакета tsoutliers и auto.arima

У меня есть ежемесячные данные с 1993 по 2015 год, и я хотел бы сделать прогноз на этих данных. Я использовал пакет tsoutliers для определения выбросов, но я не знаю, как мне продолжать прогнозировать с моим набором данных. Это мой код: product.outlier<-tso(product,types=c("AO","LS","TC"))...

9
Прогнозирование временных рядов с использованием ARIMA против LSTM

Проблема, с которой я имею дело, заключается в прогнозировании значений временных рядов. Я смотрю на один временной ряд за раз и на основе, например, 15% входных данных, я хотел бы предсказать его будущие значения. До сих пор я сталкивался с двумя моделями: LSTM (долговременная кратковременная...

9
Почему мои модели VAR работают лучше с нестационарными данными, чем со стационарными данными?

Я использую библиотеку python statsmodels VAR для моделирования данных финансовых временных рядов, и некоторые результаты меня озадачили. Я знаю, что модели VAR предполагают, что данные временного ряда являются стационарными. Я непреднамеренно подбираю нестационарную серию журнальных цен для двух...

9
Как мне подойти к этой проблеме бинарного предсказания?

У меня есть набор данных в следующем формате. Есть бинарный исход рак / нет рака. Каждый врач в наборе данных осмотрел каждого пациента и дал независимое суждение о том, есть ли у пациента рак или нет. Затем врачи дают из 5 уровень уверенности в том, что их диагноз верен, а уровень достоверности...

9
Какая модель глубокого обучения может классифицировать категории, которые не являются взаимоисключающими

Примеры: у меня есть предложение в должностной инструкции: «Старший инженер Java в Великобритании». Я хочу использовать модель глубокого обучения, чтобы предсказать ее как 2 категории: English и IT jobs. Если я использую традиционную классификационную модель, она может предсказать только 1 метку с...

9
Разброс отклонения: термин для ожидаемой квадратической ошибки прогноза за вычетом неснижаемой ошибки

Hastie et al. «Элементы статистического обучения» (2009) рассматривают процесс генерирования данных с E ( ε ) = 0 и Var ( ε ) = σ 2 ε .Y= ф( Х) + εY=f(X)+ε Y = f(X) + \varepsilon E(ε)=0E(ε)=0\mathbb{E}(\varepsilon)=0Var(ε)=σ2εVar(ε)=σε2\text{Var}(\varepsilon)=\sigma^2_{\varepsilon} Они представляют...

9
Условия циклического поведения модели ARIMA

Я пытаюсь моделировать и прогнозировать временные ряды, которые являются циклическими, а не сезонными (то есть существуют сезоноподобные модели, но не с фиксированным периодом). Это должно быть возможно сделать с использованием модели ARIMA, как упомянуто в разделе 8.5 « Прогнозирование: принципы и...

9
Прогнозирование нескольких периодов с машинным обучением

Недавно я повторил свои знания о временных рядах и понял, что машинное обучение в основном дает только прогнозы на шаг впереди. Под прогнозами на шаг впереди я подразумеваю прогнозы, которые, например, если у нас есть почасовые данные, используют данные с 10:00 для прогнозирования 11:00 и 11:00 для...