Каковы сходства и различия между этими 3 методами: пакетированного Повышая, Штабелеры? Какой самый лучший? И почему? Можете ли вы дать мне пример для
Семейство алгоритмов, объединяющее модели со слабым прогнозом в модель с сильным прогнозом. Наиболее распространенный подход называется повышением градиента, а наиболее часто используемые слабые модели - деревья классификации / регрессии.
Каковы сходства и различия между этими 3 методами: пакетированного Повышая, Штабелеры? Какой самый лучший? И почему? Можете ли вы дать мне пример для
Повышение градиентного дерева, предложенное Фридманом, использует деревья решений в качестве базовых учеников. Мне интересно, должны ли мы сделать базовое дерево решений настолько сложным, насколько это возможно (полностью выросло) или проще? Есть ли объяснение выбора? Случайный лес - это еще один...
У меня есть несбалансированные данные класса, и я хочу настроить гиперпараметры усиленного тресса с помощью xgboost. Вопросов Есть ли эквивалент для gridsearchcv или randomsearchcv для xgboost? Если нет, то каков рекомендуемый подход для настройки параметров xgboost?...
Краткое определение повышения : Может ли группа слабых учеников создать одного сильного ученика? Слабый ученик определяется как классификатор, который лишь незначительно коррелирует с истинной классификацией (он может маркировать примеры лучше, чем случайные догадки). Краткое определение случайного...
Я пытаюсь понять разницу между GBM и Adaboost. Вот что я понял до сих пор: Существуют оба алгоритма повышения, которые учатся на ошибках предыдущей модели и, наконец, составляют взвешенную сумму моделей. GBM и Adaboost очень похожи, за исключением функций потери. Но мне все еще трудно понять идею...
При изучении Gradient Boosting я не слышал о каких-либо ограничениях в отношении свойств «слабого классификатора», который метод использует для построения и ансамбля модели. Однако я не мог представить себе применение ГБ, которое использует линейную регрессию, и на самом деле, когда я выполнил...
Существует несколько реализаций модели семейства GBDT, таких как: GBM XGBoost LightGBM Catboost. Каковы математические различия между этими различными реализациями? Catboost, кажется, превосходит другие реализации, даже используя только параметры по умолчанию в соответствии с этим тестом , но все...
Я давно слежу за соревнованиями в Kaggle и осознаю, что многие выигрышные стратегии предполагают использование хотя бы одного из «больших троек»: мешки, бустинг и стекирование. Для регрессий вместо того, чтобы концентрироваться на построении одной наилучшей из возможных моделей регрессии, кажется,...
Я ищу объяснение того, как относительная важность переменной вычисляется в деревьях с градиентным усилением, которое не является слишком общим / упрощенным, например: Измерения основаны на количестве раз, которое переменная была выбрана для расщепления, взвешенной по квадрату улучшения модели в...
Каковы некоторые полезные рекомендации для тестирования параметров (например, глубина взаимодействия, minchild, частота выборки и т. Д.) С использованием GBM? Допустим, у меня 70-100 функций, население 200 000, и я собираюсь проверить глубину взаимодействия 3 и 4. Очевидно, мне нужно провести...
У меня был вопрос о параметре глубины взаимодействия в gbm в R. Это может быть вопрос noob, за который я прошу прощения, но как параметр, который, я считаю, обозначает количество терминальных узлов в дереве, в основном указывает X-way взаимодействие между предикторами? Просто пытаюсь понять, как...
Смотрите также похожий вопрос на stats.SE . В таких алгоритмах повышения , как AdaBoost и LPBoost, известно, что «слабые» ученики, которых нужно объединить, должны работать лучше, чем шанс быть полезными, из Википедии: Используемые им классификаторы могут быть слабыми (т. Е. Отображать значительную...
В качестве примера возьмем целевую функцию модели XGBoost на -й итерации:ttt L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) где - функция потерь, - выходной файл ', а - регуляризация....
Какой самый простой способ понять повышение? Почему это не повышает очень слабые классификаторы "до бесконечности"
У меня есть несколько тесно связанных вопросов относительно слабых учеников в обучении ансамблю (например, повышение). Это может показаться глупым, но каковы преимущества использования слабых по сравнению с сильными учениками? (например, почему бы не повысить с "сильными" методами обучения?) Есть...
В последнее время я работал над алгоритмами повышения обучаемости, такими как adaboost, ускорение градиента, и я знал тот факт, что наиболее часто используемым слабым учеником являются деревья. Я действительно хочу знать, есть ли некоторые недавние успешные примеры (я имею в виду некоторые статьи...
Я читал отчет о победившем решении конкурса Kaggle ( Malware Classification ). Отчет можно найти в этом сообщении на форуме . Эта проблема была проблемой классификации (девять классов, метрика - логарифмическая потеря) с 10000 элементами в наборе поездов, 10000 элементов в наборе испытаний. Во...
После выполнения анализа главных компонентов (PCA) я хочу спроецировать новый вектор на пространство PCA (т.е. найти его координаты в системе координат PCA). Я рассчитал PCA на языке R, используя prcomp. Теперь я должен быть в состоянии умножить свой вектор на матрицу вращения PCA. Должны ли...
Я читал различные (казалось бы) противоречивые утверждения, независимо от того, являются ли AdaBoost (или другие методы повышения) менее или более склонными к переобучению по сравнению с другими методами обучения. Есть ли веские причины верить тому или иному? Если это зависит, от чего это зависит?...
Я пытаюсь понять, как работает XGBoost. Я уже понимаю, как деревья с градиентным ускорением работают на Python sklearn. Что мне не ясно, так это то, работает ли XGBoost таким же образом, но быстрее, или если между ним и реализацией python есть фундаментальные различия. Когда я читаю эту статью...