Вопросы с тегом «least-squares»

Относится к общей методике оценки, которая выбирает значение параметра для минимизации квадрата разности между двумя величинами, такими как наблюдаемое значение переменной и ожидаемое значение этого наблюдения, обусловленного значением параметра. Гауссовские линейные модели подгоняются по методу наименьших квадратов, а метод наименьших квадратов - это идея, лежащая в основе использования среднеквадратичной ошибки (MSE) в качестве способа оценки оценки.

83
Когда использовать методы регуляризации для регрессии?

При каких обстоятельствах следует рассмотреть использование методов регуляризации (регрессия ребра, лассо или наименьших углов) вместо OLS? В случае, если это поможет вести дискуссию, мой главный интерес - повышение точности...

71
Генерация случайной величины с определенной корреляцией с существующей переменной

Для исследования моделирования я должен генерировать случайные переменные , которые показывают prefined (населения) корреляцию с существующей переменной .YYY Я посмотрел на Rпакеты copulaи CDVineкоторые могут производить случайные многомерные распределения с заданной структурой зависимостей. Однако...

59
Средняя абсолютная ошибка ИЛИ среднеквадратическая ошибка?

Зачем использовать среднеквадратичную ошибку (RMSE) вместо средней абсолютной ошибки (MAE) ?? Здравствуй Я исследовал ошибку, сгенерированную в вычислениях - сначала я рассчитал ошибку как среднеквадратичную среднеквадратичную ошибку. Присмотревшись немного поближе, я вижу, что эффекты возведения в...

59
Почему оценка гребня становится лучше, чем OLS, добавляя константу к диагонали?

Я понимаю, что оценка регрессии гребня является ββ\beta который минимизирует остаточную сумму квадрата и штраф на размер ββ\beta βridge=(λID+X′X)−1X′y=argmin[RSS+λ∥β∥22]βridge=(λID+X′X)−1X′y=argmin⁡[RSS+λ‖β‖22]\beta_\mathrm{ridge} = (\lambda I_D + X'X)^{-1}X'y = \operatorname{argmin}\big[...

45
Регрессия, когда остатки OLS обычно не распределяются

На этом сайте есть несколько потоков, обсуждающих, как определить, асимптотически ли нормально распределены остатки OLS . В этом превосходном ответе представлен другой способ оценки нормальности остатков с помощью R-кода . Это еще одно обсуждение практической разницы между стандартизированными и...

45
Откуда исходит неправильное представление о том, что Y должен быть нормально распределен?

Достоверно авторитетные источники утверждают, что зависимая переменная должна быть нормально распределена: Предположения модели: нормально распределен, ошибки нормально распределены, и независимы, фиксирован и постоянная дисперсия .e i ∼ N ( 0 , σ 2 ) X σ 2YYYei∼N(0,σ2)ei∼N(0,σ2)e_i \sim...

42
Метод максимального правдоподобия и метод наименьших квадратов

В чем основное различие между оценкой максимального правдоподобия (MLE) и оценкой наименьших квадратов (LSE)? Почему мы не можем использовать MLE для прогнозирования значений в линейной регрессии и наоборот?Yyy Любая помощь по этой теме будет принята с...

41
Как вывести решение о регрессии гребня?

У меня возникли некоторые проблемы с выводом решения для регрессии гребня. Я знаю регрессионное решение без условия регуляризации: β=(XTX)−1XTy.β=(XTX)−1XTy.\beta = (X^TX)^{-1}X^Ty. Но после добавления термина L2 к функции стоимости, получается решениеλ∥β∥22λ‖β‖22\lambda\|\beta\|_2^2...

40
Почему сигмовидная функция вместо всего остального?

Почему де-факто стандартная сигмоидальная функция так популярна в (не глубоких) нейронных сетях и логистической регрессии?11 + е- х11+e−x\frac{1}{1+e^{-x}} Почему бы нам не использовать многие из других производных функций с более быстрым временем вычисления или более медленным затуханием (так что...

39
Является ли минимизация квадратичной ошибки эквивалентной минимизации абсолютной ошибки? Почему квадратичная ошибка более популярна, чем последняя?

Когда мы проводим линейную регрессию для подбора группы точек данных , классический подход минимизирует квадратичную ошибку. Я уже давно озадачен вопросом, будет ли минимизация квадратичной ошибки таким же результатом, как минимизация абсолютной ошибки ? Если нет, то почему минимизировать квадрат...

38
Допустимо ли включать базовую меру в качестве контрольной переменной при тестировании влияния независимой переменной на оценки изменений?

Я пытаюсь запустить регрессию OLS: DV: изменение веса за год (начальный вес - конечный вес) IV: Независимо от того вы занимаетесь спортом. Тем не менее, кажется разумным, что более тяжелые люди будут терять больше веса на единицу нагрузки, чем более худые люди. Таким образом, я хотел включить...

33
Теория за частичной регрессией наименьших квадратов

Кто-нибудь может порекомендовать хорошее изложение теории за частичной регрессией наименьших квадратов (доступно онлайн) для тех, кто понимает SVD и PCA? Я просмотрел многие источники в Интернете и не нашел ничего, что имело бы правильное сочетание строгости и доступности. zi=Xφizi=Xφiz_i=X...

29
Доказательство того, что коэффициенты в модели OLS следуют t-распределению с (nk) степенями свободы

Задний план Предположим, у нас есть модель Обыкновенных наименьших квадратов, в которой у нас есть коэффициентов в нашей регрессионной модели, kkky=Xβ+ϵy=Xβ+ϵ\mathbf{y}=\mathbf{X}\mathbf{\beta} + \mathbf{\epsilon} где - вектор коэффициентов, - матрица проектирования, определяемая...

29
Как выполнить ортогональную регрессию (наименьших квадратов) с помощью PCA?

Я всегда использую lm()в R для выполнения линейной регрессии yyy на xxx . Эта функция возвращает коэффициент ββ\beta такой, что y=βx.y=βx.y = \beta x. Сегодня я узнал об общих наименьших квадратах, и эту princomp()функцию (анализ основных компонентов, PCA) можно использовать для ее выполнения. Это...

28
Вычисление повторяемости эффектов по модели Лмера

Я только что наткнулся на эту статью , в которой описывается, как вычислить повторяемость (или надежность, или внутриклассовую корреляцию) измерения с помощью моделирования смешанных эффектов. Код R будет: #fit the model fit = lmer(dv~(1|unit),data=my_data) #obtain the variance estimates vc =...

28
Почему RSS распространяется через квадраты времени np?

Я хотел бы понять, почему в рамках модели OLS RSS (остаточная сумма квадратов) распределяется ( - это число параметров в модели, - количество наблюдений).χ2⋅(n−p)χ2⋅(n−p)\chi^2\cdot (n-p)pppnnn Я прошу прощения за то, что задал такой простой вопрос, но мне кажется, что я не могу найти ответ онлайн...

26
PCA, LDA, CCA и PLS

Как связаны PCA, LDA, CCA и PLS? Все они кажутся «спектральными» и линейными алгебраическими и очень хорошо понятными (скажем, 50+ лет теории, построенной вокруг них). Они используются для самых разных вещей (PCA для уменьшения размерности, LDA для классификации, PLS для регрессии), но все же они...

26
Эквивалентность наименьших квадратов и MLE в гауссовой модели

Я новичок в машинном обучении и пытаюсь научиться этому сам. Недавно я читал некоторые конспекты лекций и у меня возник основной вопрос. Слайд 13 говорит, что «Оценка по методу наименьших квадратов такая же, как и оценка максимального правдоподобия по гауссовой модели». Кажется, это что-то простое,...

24
Интервал прогнозирования линейной регрессии

Если наилучшим линейным приближением (с использованием наименьших квадратов) моих точек данных является линия y=mx+by=mx+by=mx+b , как я могу рассчитать ошибку аппроксимации? Если я вычислю стандартное отклонение различий между наблюдениями и предсказаниями , могу ли я потом сказать, что...