Функция lm в R может выводить оценочную ковариацию коэффициентов регрессии. Что эта информация дает нам? Можем ли мы теперь лучше интерпретировать модель или диагностировать проблемы, которые могут присутствовать в...
Функция lm в R может выводить оценочную ковариацию коэффициентов регрессии. Что эта информация дает нам? Можем ли мы теперь лучше интерпретировать модель или диагностировать проблемы, которые могут присутствовать в...
В книге Бишопа по машинному обучению обсуждается проблема подгонки полиномиальной функции к набору точек данных. Пусть M - порядок подогнанного многочлена. Это утверждает, что Мы видим, что с увеличением M величина коэффициентов обычно становится больше. В частности, для полинома M = 9 коэффициенты...
Я хочу построить регрессионную модель, которая представляет собой среднее из нескольких моделей OLS, каждая из которых основана на подмножестве полных данных. Идея, лежащая в основе этого, основана на этой статье . Я создаю k сгибов и строю k моделей OLS, каждая на основе данных без одного сгиба....
Я пытаюсь найти информацию относительно предположений о регрессии PLS (одиночный ). Я особенно заинтересован в сравнении допущений PLS с регрессией OLS. YYy Я прочитал / пролистал много литературы по теме PLS; работы Вольда (Сванте и Германа), Абди и многих других, но не нашли удовлетворительного...
Вопрос выше говорит обо всем. По сути, мой вопрос касается общей функции подбора (может быть произвольно сложной), которая будет нелинейной по параметрам, которые я пытаюсь оценить. Как выбрать начальные значения для инициализации подбора? Я пытаюсь сделать нелинейные наименьшие квадраты. Есть ли...
Когда предпочтительнее использовать оценку максимального правдоподобия вместо обычных наименьших квадратов? Каковы сильные и слабые стороны каждого? Я пытаюсь собрать практические знания о том, где использовать каждый в общих...
Если в стандартных регрессиях OLS нарушаются два предположения (нормальное распределение ошибок, гомоскедастичность), является ли начальная загрузка стандартных ошибок и доверительных интервалов подходящей альтернативой для получения значимых результатов в отношении значимости коэффициентов...
Я пытаюсь интерпретировать вывод nls (). Я прочитал этот пост, но я все еще не понимаю, как выбрать наиболее подходящий. Из моих припадок у меня есть два выхода: > summary(m) Formula: y ~ I(a * x^b) Parameters: Estimate Std. Error t value Pr(>|t|) a 479.92903 62.96371 7.622 0.000618 *** b...
Этот вопрос был задан здесь, но никто не дал хорошего ответа. Поэтому я думаю, что это хорошая идея, чтобы поднять это снова, а также я хотел бы добавить еще несколько комментариев / вопросов. Первый вопрос: в чем разница между «моделированием пути PLS» и «регрессией PLS»? Чтобы сделать его более...
В чем разница между наименьшими квадратами и линейной регрессией? Это то же
Я очень новичок в частичных наименьших квадратах (PLS) и пытаюсь понять вывод функции R plsr()в plsпакете. Давайте смоделируем данные и запустим PLS: library(pls) n <- 50 x1 <- rnorm(n); xx1 <- scale(x1) x2 <- rnorm(n); xx2 <- scale(x2) y <- x1 + x2 + rnorm(n,0,0.1); yy <-...
Я пытаюсь вычислить логарифмическую вероятность для обобщенной нелинейной регрессии наименьших квадратов для функции оптимизированной с помощью функция в пакете R , используя ковариационную матрицу дисперсии, генерируемую расстояниями на филогенетическом дереве, предполагающем броуновское движение...
У меня есть набор данных, который представляет экспоненциальный спад. Я хотел бы приспособить экспоненциальную функцию к этим данным. Я попытался лог преобразовать переменную ответа и затем использовать наименьшие квадраты, чтобы соответствовать линии; использование обобщенной линейной модели с...
Может ли кто-нибудь указать мне направление онлайнового (рекурсивного) алгоритма регуляризации Тихонова (регуляризованных наименьших квадратов)? В автономном режиме я вычисляю β^=(XTX+λI)−1XTYβ^=(XTX+λI)−1XTY\hat\beta=(X^TX+λI)^{−1}X^TY используя мой исходный набор данных, где λλλ находится с...
Я изучал линейную регрессию и попробовал ее на приведенном ниже множестве {(x, y)}, где x указал площадь дома в квадратных футах, а y - цену в долларах. Это первый пример в Andrew Ng Notes . 2104.400 1600.330 2400.369 1416.232 3000.540 Я разработал пример кода, но когда я его запускаю, стоимость...
Существует ли эмпирическое правило или вообще какой-либо способ сказать, насколько большой должна быть выборка, чтобы оценить модель с заданным количеством параметров? Так, например, если я хочу оценить регрессию наименьших квадратов с 5 параметрами, насколько большой должна быть выборка? Имеет ли...
Я пытаюсь понять, почему OLS дает необъективную оценку процесса AR (1). Рассмотрим В этой модели строгая экзогенность нарушается, т. е. и коррелируют, а и не коррелированы. Но если это правда, то почему следующий простой вывод не выполняется? утεтут-1εтPlim...
Название говорит обо всем. Я понимаю, что наименьшие квадраты и максимальное правдоподобие дадут одинаковый результат для коэффициентов регрессии, если ошибки модели будут нормально распределены. Но что произойдет, если ошибки не распределяются нормально? Почему два метода больше не...
Если у меня есть модель регрессии: где и ,Y= Хβ+ εY=Xβ+ε Y = X\beta + \varepsilon V [ε]=Id∈ Rn × nV[ε]=Id∈Rn×n\mathbb{V}[\varepsilon] = Id \in \mathcal{R} ^{n \times n}E [ε]=(0,…,0)E[ε]=(0,…,0)\mathbb{E}[\varepsilon]=(0, \ldots , 0) когда использование , обычного метода наименьших квадратов , будет...
При анализе основных компонентов (PCA) обычно нужно распределить две нагрузки друг на друга, чтобы исследовать отношения между переменными. В документе, сопровождающем пакет PLS R для выполнения регрессии главных компонентов и регрессии PLS, есть другой график, называемый графиком корреляционных...