Можно ли проверить, является ли вычислимое число рациональным или целым?
Можно ли алгоритмически проверить, является ли вычисляемое число рациональным или целым? Другими словами, возможно ли для библиотеки, которая реализует вычислимые числа, предоставлять функции isIntegerили isRational? Я предполагаю, что это невозможно, и что это как-то связано с тем, что невозможно...
computability
computing-over-reals
lambda-calculus
graph-theory
co.combinatorics
cc.complexity-theory
reference-request
graph-theory
proofs
np-complete
cc.complexity-theory
machine-learning
boolean-functions
combinatory-logic
boolean-formulas
reference-request
approximation-algorithms
optimization
cc.complexity-theory
co.combinatorics
permutations
cc.complexity-theory
cc.complexity-theory
ai.artificial-intel
p-vs-np
relativization
co.combinatorics
permutations
ds.algorithms
algebra
automata-theory
dfa
lo.logic
temporal-logic
linear-temporal-logic
circuit-complexity
lower-bounds
permanent
arithmetic-circuits
determinant
dc.parallel-comp
asymptotics
ds.algorithms
graph-theory
planar-graphs
physics
max-flow
max-flow-min-cut
fl.formal-languages
automata-theory
finite-model-theory
dfa
language-design
soft-question
machine-learning
linear-algebra
db.databases
arithmetic-circuits
ds.algorithms
machine-learning
ds.data-structures
tree
soft-question
security
project-topic
approximation-algorithms
linear-programming
primal-dual
reference-request
graph-theory
graph-algorithms
cr.crypto-security
quantum-computing
gr.group-theory
graph-theory
time-complexity
lower-bounds
matrices
sorting
asymptotics
approximation-algorithms
linear-algebra
matrices
max-cut
graph-theory
graph-algorithms
time-complexity
circuit-complexity
regular-language
graph-algorithms
approximation-algorithms
set-cover
clique
graph-theory
graph-algorithms
approximation-algorithms
clustering
partition-problem
time-complexity
turing-machines
term-rewriting-systems
cc.complexity-theory
time-complexity
nondeterminism