Лемма: Предполагая, что эта эквивалентность у нас есть (\x -> ⊥) = ⊥ :: A -> B. Доказательство: ⊥ = (\x -> ⊥ x)по eta-эквивалентности и (\x -> ⊥ x) = (\x -> ⊥)по сокращению под лямбду. В отчете Haskell 2010, раздел 6.2, seqфункция определяется двумя уравнениями: seq :: a -> b...