Кривые Каплана-Мейера, кажется, говорят иначе, чем регрессия Кокса

9

В R я делаю анализ данных выживаемости больных раком.

Я читал очень полезные материалы об анализе выживания в CrossValidated и других местах и ​​думаю, что понял, как интерпретировать результаты регрессии Кокса. Тем не менее, один результат по-прежнему меня беспокоит ...

Я сравниваю выживание против пола. Кривые Каплана-Мейера явно соответствуют пациенткам женского пола (я несколько раз проверял, что легенда, которую я добавил, верна, пациент с максимальной выживаемостью 4856 дней действительно является женщиной): введите описание изображения здесь

И регрессия Кокса возвращается:

Call:
coxph(formula = survival ~ gender, data = Clinical)

  n= 348, number of events= 154 

              coef exp(coef) se(coef)      z Pr(>|z|)  
gendermale -0.3707    0.6903   0.1758 -2.109    0.035 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

           exp(coef) exp(-coef) lower .95 upper .95
gendermale    0.6903      1.449    0.4891    0.9742

Concordance= 0.555  (se = 0.019 )
Rsquare= 0.012   (max possible= 0.989 )
Likelihood ratio test= 4.23  on 1 df,   p=0.03982
Wald test            = 4.45  on 1 df,   p=0.03499
Score (logrank) test = 4.5  on 1 df,   p=0.03396

Таким образом, коэффициент gendermaleриска (HR) для пациентов мужского пола ( ) составляет 0,6903. Я бы интерпретировал это (не глядя на кривую Каплана-Мейера): если ЧСС <1, то быть пациентом мужского пола защитно. Точнее, пациентка женского пола на 1 / 0,6903 = exp (-coef) = 1,494 с большей вероятностью умрет в любое конкретное время, чем мужчина.

Но это не похоже на то, что говорят кривые Каплана-Мейера! Что не так с моей интерпретацией?

francoiskroll
источник
3
Судя по вашей кривой КМ, предположение PH о регрессии Кокса неверно.
Глубокий север
Понимаю. Я не смотрел на это раньше! Графически это означает, что мои кривые Каплана-Мейера должны быть параллельными, чтобы я мог безопасно использовать Кокса, верно? Это выглядит более или менее нормально до ~ 2200 дней. Можно ли посмотреть результаты Кокса для всех данных за несколько секунд до пересечения?
francoiskroll
4
NB Это кривые , где - это оценочная функция выживания для группы , которая должна быть параллельной при пропорциональных опасностях. Как указывает @IWS, доверительные интервалы для женской группы будут очень широкими примерно через 3000 дней (только две из них преодолевают эту точку?), Поэтому предположение о PH, возможно, не слишком плохое. S я ( т ) яloglogS^i(t)S^i(t)i
Scortchi - Восстановить Монику
@DeepNorth: я не вижу убедительных доказательств против пропорциональных рисков. Да, кривые технически перекрываются ... но это на крайних хвостах.
Клифф AB
Чтобы дополнить другие ответы и комментарии, сравните медианную выживаемость или пятилетнюю выживаемость для мужчин и женщин. В этих данных есть явное преимущество для мужчин в соответствии с анализом Кокса PH.
Итамар

Ответы:

12

Это очень хороший пример непропорциональных опасностей ИЛИ эффекта «истощения» в анализе выживаемости. Я постараюсь объяснить.

Сначала внимательно взгляните на свою кривую Каплана-Мейера (КМ): в первой части (примерно до 3000 дней) вы можете увидеть, что доля мужчин, все еще живых в группе риска в момент времени t, больше, чем доля женщин. (то есть синяя линия «выше» красной). Это означает, что действительно мужской пол является «защитным» для изучаемого события (смерти). Соответственно, коэффициент опасности должен быть между 0 и 1 (а коэффициент должен быть отрицательным).

Однако после дня 3000 красная линия выше! Это действительно говорит об обратном. Основываясь только на этом графике КМ, это может указывать на непропорциональную опасность. В этом случае «непропорциональный» означает, что влияние вашей независимой переменной (пола) не является постоянным во времени. Другими словами, опасность отношение жизнеспособна изменяться по мере продвижения времени. Как объяснено выше, это похоже на случай. Обычная пропорциональная модель риска Кокса не учитывает такие эффекты. На самом деле, одно из главных предположений заключается в том, что опасность пропорциональна! Теперь вы также можете смоделировать непропорциональные опасности, но это выходит за рамки этого ответа.

Необходимо сделать еще один комментарий: это различие может быть связано с тем, что истинные опасности непропорциональны илитот факт, что существует большая разница в оценках хвоста кривых КМ. Обратите внимание, что к этому моменту общая группа из 348 пациентов снизится до очень небольшой группы населения, все еще подверженной риску. Как видите, в обеих гендерных группах есть пациенты, испытывающие это событие, и пациенты, подвергаемые цензуре (вертикальные линии). По мере снижения численности населения, подвергающегося риску, оценки выживаемости станут менее определенными. Если бы вы построили 95% доверительные интервалы вокруг линий КМ, вы бы увидели, как ширина доверительного интервала увеличивается. Это важно и для оценки опасностей. Проще говоря, поскольку группа риска и количество событий в последний период вашего исследования невелики, этот период будет меньше влиять на оценки в вашей исходной модели Кокса.

Наконец, это объясняет, почему опасность (предполагаемая постоянной во времени) больше соответствует первой части вашего КМ, а не конечной конечной точке.

РЕДАКТИРОВАТЬ: см. Точечный комментарий @ Scrotchi к первоначальному вопросу: как уже говорилось, эффект низких чисел в последний период исследования заключается в том, что оценки опасностей в эти моменты времени являются неопределенными. Следовательно, вы также менее уверены, не является ли очевидное нарушение предположения о пропорциональной опасности случайным. Что касается состояний @ scrotchi, предположение PH может быть не таким уж плохим.

IWS
источник
1
(-1) Хвосты пересекаются на крайних концах, где у нас крайне мало данных. Фактически, доказательства «непропорциональных опасностей» основаны только на двух наблюдениях (то есть, когда t> 2800, в женской когорте осталось только два субъекта, и, кроме того, последнее событие перед этим в группе было около t = 2100)
Клифф АВ
2
@CliffAB Спасибо за отзыв Cliff AB. Я немного сбит с толку, так как ваше замечание именно то, что я пытался сказать. Я признаю: это могло бы быть немного короче. -1 немного
IWS
2
возможно, это было немного подло от меня. Единственное, что я хочу сказать, это то, что когда я смотрю на это, я не вижу хорошего примера непропорциональной опасности, а достаточно мало данных о хвостах. Я вижу, что первое предложение было пересмотрено (я думаю, разве я не пропустил это в первый раз?), Чтобы обратиться к нему, так что теперь (-1) определенно не используется.
Клифф AB
1
Ой, кажется, я пропустил это в первый раз. Сожалею!
Клифф А.Б.
Нет проблем, по крайней мере, мы согласны с ответом: D
IWS
5

Вы не уверены в характере вашей продукции. Эти данные говорят: если вы мужчина, вы, скорее всего, будете жить дольше, чем женщина; Самки выживают хуже, чем самцы. Это отражено в результатах регрессии, так как эффект для MALE - иметь отрицательный логарифмический коэффициент опасности, например, у мужчин риск ниже, чем у женщин. В большинстве случаев (когда кривые «шагают») кривая выживаемости самцов больше, чем у самок, результаты модели Кокса и график очень хорошо согласуются. Кривые КМ подтверждают это, как и выходные данные регрессионной модели. «Крест» несущественен.

Кривые КМ ведут себя плохо в хвостах, особенно когда они близки к 0% и / или резко сужаются. Ось Y - это доля выживших. Поскольку относительно мало людей, которые долго выживают в исследовании, и немногих, кто умирает в то время, достоверность оценок интуитивно и графически ужасна. Я отмечаю, например, что в вашей когорте заметно меньше женщин, чем мужчин, и что после 2800 дней в когорте осталось менее 10 женщин, о чем свидетельствуют этапы кривой выживания и отсутствие цензурированных событий.

В качестве интересного примечания, поскольку при анализе выживаемости с использованием кривых КМ, тестов логарифмического ранга и моделей Кокса используется ранжированное время выживания, фактическая продолжительность выживания несколько не имеет значения. На самом деле, ваша самая длинная выжившая женщина могла бы выжить еще 100 лет, и это не повлияло бы на анализы. Это связано с тем, что базовая функция риска (не наблюдавшая каких-либо событий в течение последних 13 лет) предполагает, что в течение следующих 87 лет не было никакого риска смерти, так как тогда никто не умер.

Если вы хотите, чтобы надежный HR получал правильные 95% CI и p-значения для этого, укажите robust=TRUEв Cox-PH для получения стандартных ошибок сэндвича. В этом случае ЧСС - это усредненное по времени ЧСС, сравнивающее мужчин с женщинами во всех случаях неудач.

Adamo
источник
Для пояснения: на графике КМ у самцов лучшая выживаемость до 2700 дней. После этого женщины лучше выживают. Но этот хвост не точен, потому что там так мало данных. Вы можете видеть, что два шага на кривой КМ принимают выживаемость женщин от 35% до 0%, так что, скорее всего, это два человека. Было бы полезно построить кривые КМ с доверительными полосами. Тогда я предполагаю, что вы увидите четкое разделение примерно до 2000 дней, а затем пересекаетесь.
Харви Мотульский
2
@ HarveyMotulsky верно, но хвосты КМ очень ненадежны. Если бы ОП привлекала КИ, они бы сильно перекрывались, так что по заключению мы можем сказать, что выживание, вероятно, было двусмысленным после 2700 дней.
AdamO
Именно моя точка зрения. Данные ясно показывают, что мужчины (в этой ситуации, какой бы она ни была) имеют лучшую выживаемость, по крайней мере, в первые 2000+ дней.
Харви Мотульский