Что подразумевается под термином «вычислительная основа»?

15

Что подразумевается под термином «вычислительная основа» в контексте квантовых вычислений и квантовых алгоритмов?

пирамиды
источник

Ответы:

6

Когда у нас есть только один кубит, в вычислительной основе нет ничего особенного; просто приятно иметь каноническую основу. На практике вы можете подумать, что сначала вы реализуете вентиль с Z 2 = I и Z I , а затем говорите, что вычислительный базис является собственным базисом этого вентиля.ZZ2=IZI

Однако, когда мы говорим о мульти-кубитных системах, вычислительная основа имеет смысл. Это происходит от выбора базиса для каждого кубита, а затем от базиса, который является тензорным произведением всех этих базисов. Выбор одного и того же базиса для каждого кубита - это просто сохранять все единообразным, а называть их и 1 - хороший нотационный выбор. Что действительно важно, так это то, что наши базовые состояния являются состояниями продукта в наших кубитах: вычислительные базовые состояния можно подготовить, инициализируя наши кубиты отдельно, а затем объединяя их. Это не верно для произвольных состояний! Например, состояние кошки 101требует лог-глубины контура для тогочтобы подготовить его из состояния продукта.12(|0n+|1n)

Джалекс Старк
источник
8

Квантовые вычисления имеют дело (в основном) с конечномерными квантовыми системами, называемыми кубитами . Если вы знаете основную квантовую механику, то знаете, что гильбертово пространство кубита есть , т. Е. Двумерное комплексное гильбертово пространство над C (для более технических людей гильбертово пространство на самом деле является C P 1 ).C2CCP1

Поэтому, чтобы описать векторы (или физически, квантовое состояние кубита) в этом двумерном гильбертовом пространстве, нам нужно как минимум два базисных элемента. Если вы думаете о состоянии кубита как вектор столбца,

тогда вам нужно будет указать, чтоa,bозначает состояние кубита. Обратите внимание, что то, чтоa,b, зависит от того, что является основой системы-могут быть два разных вектора столбца (в разных базах), которые представляют одно и то же состояние| г |кубита. В любом случае нам нужна некоторая основа для работы, и именно здесь вступает в силу «вычислительная основа».

[ab],
a,ba,b|ψ

Вычислительный базис - это просто два базовых состояния, состоящих из (любого из) двух различных квантовых состояний, в которых кубит может находиться физически. Однако, как и в линейной алгебре, выбор двух ( линейно независимых ) состояний, которые вы выбираете, является произвольным (я говорю, вроде как, потому что в некоторых физических ситуациях существует естественный выбор базиса; см. Einselection ).

||σz

keisuke.akira
источник
Предпочтительная базисная проблема может быть решена более естественно с помощью метода рамки когерентности, чем метод einselection. - Источник: «Рамка когерентности, сохранение запутанности и Einselection» arxiv.org/abs/1104.5550 .
Роб
5

|0|1

Чтобы привести несколько примеров:

  1. Если кубиты кодируются в поляризацию одиночных фотонов, вычислительный базис обычно является базой, образованной состояниями горизонтальной и вертикальной поляризации фотона.
  2. Sz
  3. Если кубит закодирован в присутствии или отсутствии фотона в данном режиме, то «вычислительная основа» является, в общем, профессиональным состоянием этого режима.

Я мог бы продолжить. Также часто говорят о «вычислительной основе» для многомерных состояний (qudits), и в этом случае применяется то же самое: база называется «вычислительной», когда она является наиболее «естественной» в данном контексте.

{|0,|1,...}

GLS
источник
0

Квантовое состояние - это вектор в многомерном векторном пространстве (гильбертовом пространстве). Существует один базис, естественный для любого квантового алгоритма (или квантового компьютера), который основан на кубитах: состояния, которые соответствуют двоичным числам, являются особыми, они являются так называемыми состояниями вычислительных базисов.

пирамиды
источник