Чтобы «задать свой вопрос», я должен сначала решить модель. Я опущу некоторые шаги, но тем не менее, это неизбежно сделает этот пост очень длинным - так что это также тест, чтобы увидеть, нравится ли этому сообществу такие вопросы.
Прежде чем начать, я поясняю, что это может выглядеть полностью как стандартная неоклассическая модель роста в непрерывном времени, но это не так : она касается одного человека, который не «представляет» кого-либо еще в экономике вокруг него, экономике, которая не моделируется. Основой здесь является «применение оптимального управления к задаче максимизации отдельного человека». Речь идет о структуре оптимального управления и самом методе.
Мы решаем проблему максимизации межвременной полезности для маленького предпринимателя, которому принадлежит капитал в его фирме, в то время как он покупает услуги по трудоустройству на совершенно конкурентном рынке труда и продает свой продукт (свежие пончики) на совершенно конкурентном рынке товаров. Мы устанавливаем модель в непрерывном времени без неопределенности (социально-экономические условия устойчивы) и с бесконечным горизонтом (бизнесмен предвидит много его будущих копий подряд):
где - потребление предпринимателя, - мгновенная полезность от потребления, - коэффициент чистых временных предпочтений, - капитал фирмы, - норма амортизации капитала, а f (k, \ ell) это производственная функция бизнеса. Начальный уровень капитала указан, к_0 . Собственная занятость бизнесмена бизнесом относится к капиталу. Производственная функция является стандартной неоклассической (постоянная отдача от масштаба, положительные предельные продукты, отрицательные вторые частичные, условия Инада). Ограничениями являются закон движения капитала и условие трансверсальности с использованием множителя текущего значения.
Настройка текущего значения гамильтониана
вычисляем условия первого порядка
и объединяя их, мы получаем закон эволюции потребления нашего бизнесмена,
Из оптимального правила для спроса на рабочую силу (статический) и константы, возвращающейся к импликации масштаба ( ), мы получаем . Вставляя это в закон движения капитала, мы получаемf = f k k + f ℓ ℓ f - w ℓ = f k k
Уравнения и образуют систему дифференциальных уравнений. Установившиеся значения для потребления и капитала предпринимателя( 2 )
... это довольно знакомое выражение.
иногда называют «измененным золотым правилом» уровня капитала. Якобиан системы, оцененный по значениям установившегося состояния, имеет отрицательный определитель для любого значения параметров модели , что является необходимым и достаточным условием для системы, чтобы продемонстрировать устойчивость по седловому пути.
Максимум локуса находится в точке, (иногда ее называют уровнем капитала "золотого правила") ~ к
Значение важно в качестве эталона: это уровень капитала, где а - максимум (не оптимальное или устойчивое состояние ).
локусов пересекают горизонтальную ось фазовой диаграммы (что меры капитала) на стационарном уровень капитала .
Если , что требует из-за отрицательных вторых частичек, у нас будет «чрезмерное накопление капитала» (слишком много пончиков): бизнесмен мог бы наслаждаться более устойчивым государственное потребление с более низким уровнем капитала. Используя и мы имеем
Неравенство является условием неоптимального устойчивого уровня капитала. И дело в том, что мы не можем исключить это . Это просто требует, чтобы бизнесмен был «достаточно терпеливым», с достаточно небольшим уровнем чистых временных предпочтений, но все же позитивным.
Здесь начинается проблема: избыточное накопление капитала фактически исключается в модели репрезентативного агента. Это возможно в перекрывающихся моделях генерации, но как непредвиденное последствие на макроэкономическом уровне, один из самых ранних примеров того, что макроэкономика может быть микрообоснованной и по-прежнему вести себя иначе, чем микромир.
Но наша модель не относится ни к одной из категорий: это модель частичного равновесия одного агента в неявно неоднородной среде - и общее равновесие здесь не изменит результатов: этот человек представляет только себя. Таким образом, проблема в том, что если выполнено, то решение оптимального управления будет явно неоптимальным , потому что здесь у нас есть один человек, одна воля, единый разум: глядя на решение, наш бизнесмен скажет: « эй, этот метод бесполезен, если я последую его совету, я получу субоптимально высокий уровень капитала ».
И я не удовлетворен тем, чтобы просто сказать: «Ну, Оптимальное управление не подходит для этой проблемы, попробуйте другой метод», потому что я не понимаю, почему мы должны считать его неподходящим. Но если он подходит, то метод должен сигнализировать , что - то не так, он должен в какой - то момент требуют , что имеет не выполняется, для того , чтобы быть в состоянии предложить решение (если так случится , что не подожди, все выглядит отлично).
Кто-то может спросить: «Может быть, условие трансверсальности нарушается, если выполнено?» - но это не выглядит так, потому что , которая переходит в положительную константу, а переходит в ноль, требуя только, чтобы .λ ( t ) k ( t ) = k ( t ) / c ( t ) e - ρ t ρ > 0
Мои вопросы:
1) Может ли кто-нибудь предложить некоторое понимание здесь?
2) Буду признателен, если кто-нибудь решит это с помощью динамического программирования и сообщит о результатах.
ДОБАВЛЕНИЕ
С математической точки зрения, принципиальное отличие этой модели заключается в том, что оптимизированный закон движения капитала, ур. включает в себя не весь вывод как в стандартной модели, а только возврат к капиталу . И это происходит потому, что мы разделили права собственности на выход, что и следует ожидать в рамках «проблемы максимизации индивидуального бизнеса».f k k
источник
Ответы:
Я полагаю, что проблема в том, что устойчивое состояние может не существовать, и вместо этого система демонстрирует устойчивый рост (в зависимости от параметров).
Причина в том, что модель эквивалентна стандартной проблеме экономии потребления с экзогенной и постоянной процентной ставкой. Чтобы увидеть это, сначала рассмотрим условие первого порядка для трудового выбораf2(k,ℓ)=w (здесь есть частная производная ф WRT. Я й аргумент). Используя определение постоянной прибыли, предельный продукт труда равен
∂fi f i
которая зависит только от отношения капитала к труду. Если заработная плата постоянна, трудовой ВОК однозначно определяет оптимальный
источник
Я публикую это как ответ, потому что он продолжается в ответе пользователя @ivansml ... который и определил улов здесь, улов, который я наивно упустил из виду (хотя это узкий случай, хотя интересный критерий наступает после. Тем не менее, это должно было быть решено).
Действительно, при экзогенной ставке заработной платы и совершенно конкурентной оптимизации спроса на рабочую силу предельный продукт капитала определяется только параметрами модели и ставкой заработной платы. Для простого случая, когда мы предполагаем, что ставка заработной платы постоянна, анализ @ivansml выполняется: модель становится моделью эндогенного роста : предельный продукт капитала является постоянным, что и необходимо для эндогенного роста, где нет устойчивого состояние в уровнях .
Обозначая с = ˙ с / с , а к = ˙ к / к , уравнения ( 1 ) и ( 2 )c^=c˙/c k^=k˙/k (1) (2) от OP можно записать
к =FK-δ-с
Поскольку постоянна, скорость роста потребления постоянна - ноль, положительный или отрицательный, в зависимости от параметров и заработной платы. С другой стороны, дифференцируя ( 2 б ) по времени, мы получаемfk (2b)
и очевидно , что для стационарного роста мы хотим к = с , что из ( 2 б ) получается только тогда , когда с = ρ к . Это легко проверить, так как λ ( t ) =k^=c^ (2b) c=ρk , единственный способ выполнения условия трансверсальности - это если потребление и капитал растут или уменьшаются с одинаковой скоростью (или остаются постоянными).λ(t)=c(t)
В самих моделях эндогенного роста, где мы исследуем всю экономику, мы просто предполагаем, что параметры модели таковы, что существует положительный темп роста, потому что это то, что мы наблюдаем в реальном мире. Но здесь у нас есть только один человек. Итак, что мы можем сказать нашему бизнесмену?
Если , темпы роста являются положительными, и как его потребление, так и капитал должны расти «вечно», поддерживая постоянное соотношение. Если f k - δ - ρ = 0 , скорость роста равна нулю, и обе переменные остаются всегда постоянными. Если f k - δ - ρ < 0 , темп роста отрицательный, и мы должны войти в нисходящую спираль убывающих потребления и капитала (всегда сохраняя соотношение c =fk−δ−ρ>0
fk−δ−ρ=0
fk−δ−ρ<0 ).c=ρk
Это имеет некоторую интуицию, подтверждающую целесообразность применения Оптимального управления: с учетом других параметров и уровня заработной платы, чем больше «нетерпение» (тем больше ), тем больше становится вероятность того, что человек будет испытывать снижение уровня потребления, поскольку Будущее и, следовательно, инвестиции не очень по душе. Конечно, монотонная нисходящая спираль может показаться не очень реалистичной в качестве решения, но это очень стилизованная модель, обеспечивающая, по существу, общие тенденции на обязательно очень формальном математическом языке.ρ
Действительно интересная часть начнется , если мы рассмотрим переменную заработную плату . Это может создать всевозможную интересную и сложную динамику для нашего маленького бизнесмена и его решений в области потребления и инвестиций.
источник
Я думаю, что ключевой вопрос заключается в том, является ли эта фирма единственной фирмой в экономике. Если это так, то уже не правильно принимать значение как заданное, поскольку w будет зависеть от его собственного решения о накоплении капитала. В этом случае вы должны сделать замены, которые вы сделали перед уравнением (2) при настройке гамильтониана. С другой стороны, если это одна из многих фирм, так что ставка заработной платы является экзогенной, то замены до экв. (2) не действительны. Я думаю , вам нужно тщательно различать big- к , совокупный капитал в экономике, и мало- K капитала , выбранный этого решением.w w k k
источник