Я пытаюсь понять ключевые различия между GBM и XGBOOST. Я пытался найти его в Google, но не смог найти хороших ответов, объясняющих различия между двумя алгоритмами и почему xgboost почти всегда работает лучше, чем GBM. Что делает XGBOOST таким...
Я пытаюсь понять ключевые различия между GBM и XGBOOST. Я пытался найти его в Google, но не смог найти хороших ответов, объясняющих различия между двумя алгоритмами и почему xgboost почти всегда работает лучше, чем GBM. Что делает XGBOOST таким...
Я пытаюсь обучить модели повышения градиента более чем на 50 тыс. Примеров с 100 числовыми функциями. XGBClassifierобрабатывает 500 деревьев в течение 43 секунд на моей машине, в то время как GradientBoostingClassifierобрабатывает только 10 деревьев (!) за 1 минуту и 2 секунды :( Я не стал...
В настоящее время я использую XGBoost для набора данных с 21 функцией (выбранной из списка из 150 функций), а затем горячо закодировал их, чтобы получить ~ 98 функций. Некоторые из этих 98 функций несколько избыточны, например: переменная (функция) также отображается как и...
Насколько я знаю, обучать обучение моделей ранга, вам нужно иметь три вещи в наборе данных: ярлык или релевантность идентификатор группы или запроса характерный вектор Например, набор данных Microsoft Learning to Rank использует этот формат (метка, идентификатор группы и функции). 1 qid:10...
фон: в xgboost в итерационным подгоняет дерево ф т по всему п примерам , которые сводят к минимуму следующей цели:tttftftf_tnnn ∑i=1n[gift(xi)+12hif2t(xi)]∑i=1n[gift(xi)+12hift2(xi)]\sum_{i=1}^n[g_if_t(x_i) + \frac{1}{2}h_if_t^2(x_i)] где сначала порядок и производные второго порядка над нашей...