Медиана справедливее, чем значит?

17

Я недавно прочитал совет, что вы должны использовать медиану, а не средство для устранения выбросов. Пример: следующая статья http://www.amazon.com/Forensic-Science-Introduction-Scientific-Investigative/product-reviews/1420064932/

имеет 16 отзывов на данный момент:

review= c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 1, 1)
summary(review)  ## "ordinary" summary

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
1.000   3.750   5.000   4.062   5.000   5.000 

Поскольку они используют Среднее, статья получает 4 звезды, но если бы они использовали Медиану, она получила бы 5 звезд.

Разве медиана не является «справедливым» судьей?


Эксперимент показывает, что ошибка медианы всегда больше средней. Медиана хуже?

library(foreach)

#the overall population of bookjudgments
n<-5
p<-0.5
expected.value<-n*p
peoplesbelieve <-rbinom(10^6,n, p)

#16 ratings made for 100 books
ratings <- foreach(i=1:100, .combine=rbind) %do% sample(peoplesbelieve,16)
stat <- foreach(i=1:100, .combine=rbind) %do% c(mean=mean(ratings[i,]), median=median(ratings[i,]))

#which mean square error is bigger? Mean's or Median's?
meansqrterror.mean<-mean((stat[,"mean"]-expected.value)^2)
meansqrterror.median<-mean((stat[,"median"]-expected.value)^2)

res<-paste("mean MSE",meansqrterror.mean)
res<-paste(res, "| median MSE", meansqrterror.median)
print(res)

Роланд Кофлер
источник
3
Почему 5-звездочный рейтинг был бы более справедливым? Есть 6/16 отзывов, которые дали более низкий рейтинг ...
Нико
Хорошо, чем, по-вашему, среднее значение является правильным? большинство заявило, что это на 5.60% больше, остальные 6/16 сказали так.
Роланд Кофлер
2
Если бы мне пришлось дать дискретную оценку, то, увидев эти 16 обзоров, я бы дал 4, а не 5, поскольку-мне- 5 означало бы, что все (или подавляющее большинство) голосов составляют 5. 6/16 - это ~ 40% , что не совсем незначительно.
Нико
8
Так что, по сути, я думаю, что ни среднее, ни среднее не хороши. Показывать (как это делает Amazon) гистограмму с разными голосами - лучший вариант. Кроме того, интересно отметить, что онлайн-рейтинги 1-5 не всегда так честны
nico
1
@nico: оценка полна ловушек, на что вы указываете, это один из аргументов моей статьи здесь: objektorient.blogspot.com/2010/09/…
Роланд Кофлер

Ответы:

26

Проблема в том, что вы не определили, что значит иметь хороший или справедливый рейтинг. Вы предлагаете в комментарии к ответу @ Кевина, что вам не нравится, если один плохой отзыв удаляет элемент. Но если сравнивать два элемента, у одного из которых есть «идеальный отчет», а у другого - один плохой обзор, возможно, эту разницу следует отразить.

Существует целый (многомерный) континуум между медианой и средним. Вы можете заказать голоса по значению, а затем взять средневзвешенное значение с весами в зависимости от позиции в этом порядке. Среднее значение означает, что все веса равны, медиана соответствует только одной или двум записям в середине, получая ненулевой вес, усеченное среднее соответствует тому, что все, кроме первой и последней пары, имеют одинаковый вес, но вы также можете решить взвесить й из n образцов с весом 1kn илиexp(-(2k-1-n)211+(2k1n)2, чтобы бросить что-то случайное там. Может быть, такое средневзвешенное значение, при котором выбросы получают меньший вес, но все же ненулевое количество, может сочетать хорошие свойства медианы и среднего?exp((2k1n)2n2)

Эрик П.
источник
22

Ответ, который вы получите, зависит от вопроса, который вы задаете.

Среднее и среднее ответят на разные вопросы. Поэтому они дают разные ответы. Дело не в том, что один «справедливее» другого. Медианы часто используются с сильно искаженными данными (такими как доход). Но даже там иногда лучше всего. И иногда вы не хотите НИКАКОГО измерения центральной тенденции.

Кроме того, всякий раз, когда вы даете меру центральной тенденции, вы должны давать некоторую меру распространения. Наиболее распространенными парами являются среднее стандартное отклонение и медиана-межквартильный диапазон. В этих данных давать медиану 5, я думаю, вводит в заблуждение или, по крайней мере, неинформативно. Медиана также будет 5, если каждый голос был 5.

Питер Флом - Восстановить Монику
источник
5
Ваша точка зрения о степени распространения является ключевой здесь. Это одна из проблем, которая постоянно поднимается в этой дискуссии под другими именами, и она также связана с обсуждением Эриком П. схем взвешивания.
Уэйн
8

Если единственными вариантами выбора являются целые числа в диапазоне от 1 до 5, можно ли вообще считать выброс?

α=0,05

Grubbs test for one outlier

data:  review  G = 2.0667, U = 0.6963,
p-value = 0.2153 alternative
hypothesis: lowest value 1 is an outlier
KMM
источник
потому что только один человек в вашем примере может резко изменить результат. если человек полагал, что книга имеет другую тему, его вина изменит рейтинг
Роланд Кофлер
2
Чье-то мнение - вина? Я бы сказал, что неудача пытается сделать осмысленные выводы на основе единой статистики из нескольких точек данных. Как отмечает @nico выше, Amazon показывает гистограмму всех рейтингов.
КММ
5

Эксперимент показывает, что ошибка медианы всегда больше средней.

Это зависит от используемой вами функции стоимости.

MSE минимизируется по среднему значению. Поэтому, если вы используете MSE, медиана всегда будет хуже, чем средняя.

НО, если бы вы использовали абсолютную ошибку, среднее было бы хуже!

Хорошее объяснение этому можно найти здесь: http://www.johnmyleswhite.com/notebook/2013/03/22/modes-medians-and-means-an-unifying-perspective/

Выбор зависит от вашей проблемы и предпочтений. Если вы не хотите, чтобы выбросы оказывали большое влияние на положение «центральной точки», то выбирайте медиану. Если вы заботитесь о выбросах, вы выбираете среднее.

Доминик Дежа
источник
4

Просто быстрая мысль:

Если вы предполагаете, что каждый рейтинг составлен из скрытой непрерывной переменной, тогда вы можете определить медиану этой базовой непрерывной переменной, представляющей интерес, в качестве значения интереса, а не среднего значения этого базового распределения. Там, где распределение симметрично, тогда среднее значение и медиана в конечном итоге будут оценивать одни и те же величины. Там, где распределение искажено, медиана будет отличаться от среднего. В этом случае, на мой взгляд, медиана будет больше соответствовать тому, что мы считаем типичной величиной. Это помогает понять, почему средний доход и средние цены на жилье обычно указываются, а не средние.

Однако, когда у вас есть небольшое количество дискретных значений, медиана работает плохо.

Возможно, вы могли бы использовать некоторую процедуру оценки плотности и затем взять медиану этого, или использовать некоторую интерполированную медиану.

Джером англим
источник
2

Преимущество использования медианы для звездных рейтингов состоит в том, что умные пользователи (знающие об использовании медианы) не будут «играть» в систему:

Если рациональный пользователь считает, что надлежащий рейтинг должен составлять 4 звезды, но в настоящее время он имеет 4,5 звезды, то лучший способ получить четыре звезды (при условии, что было более шести голосов) - это проголосовать за 1 звезду в системе среднего рейтинга. ,

В то время как в срединной системе рациональный выбор пользователя состоит в том, чтобы просто проголосовать именно за то количество звезд, которое, по мнению пользователя, должен иметь продукт.

Это своего рода второй ценовой аукцион для звездных рейтинговых систем.

Стефан Берсье
источник
Интересный аргумент, аналог использования правильных функций оценки
kjetil b halvorsen
Не совсем. Мой ответ показывает примеры, где новое высокое или низкое значение сместит медиану.
Ник Кокс
Не совсем что ? Хороший ответ, кстати.
Стефан Берсиер
Рациональной стратегией может быть голосование за крайность Естественно, всегда возникает вопрос, сколько известно о голосах других.
Ник Кокс
@NickCox, только если вы действительно хотите, чтобы экстрим был правильным рейтингом. Поэтому я верю тому, что я написал, работает во всех случаях. И это не противоречит вашему ответу.
Стефан Берсье
1

Несколько хороших ответов все еще оставляют место для дальнейших комментариев.

Во-первых, никто не возражал против идеи, что медиана предназначена для устранения выбросов, но я это уточню. Предполагаемый смысл очевиден, но для реальных данных легче быть более сложным. Самое большее, медиана предназначена для того, чтобы игнорировать или игнорировать выбросы, но даже это не гарантируется. Например, с оценками 1 1 1 5 5 5 медиана и среднее согласуются на 3, поэтому все может показаться хорошим. Но дополнительные 5 уменьшат медиану до 5, а дополнительные 1 приведут медиану к 1. Среднее значение сместится примерно на 0,286 в каждом случае. Следовательно, среднее здесь более устойчиво, чем медианное. Пример можно отклонить как необычный, но это не возмутительно. Дело не оригинальное, естественно. Одним из мест, где он сделан, является Мостеллер, Ф. и Тьюки, Дж. У. 1977. Анализ данных и регрессия. Рединг, Массачусетс: Аддисон-Уэсли, с. 34-35.

Во-вторых, обрезанные средства были упомянуты, и идея заслуживает большего толчка. Среднее значение и медиана не обязательно должны быть строгими альтернативами, поэтому аналитик должен выбрать (проголосовать за) один или другой. Вы можете рассмотреть все возможные усеченные средства на основе усечения определенного количества значений в каждом хвосте . В таблице показано # количество значений, включенных в расчет среднего значения:

  +----------------------------+
  | number    #   trimmed mean |
  |----------------------------|
  |      0   16         4.0625 |
  |      1   14       4.214286 |
  |      2   12       4.416667 |
  |      3   10            4.6 |
  |      4    8           4.75 |
  |      5    6       4.833333 |
  |      6    4              5 |
  |      7    2              5 |
  +----------------------------+

Основная картина здесь в том, что вы можете выбрать свою ставку дисконтирования (игнорируйте столько значений в каждом хвосте, сколько подозреваете) в качестве своего рода страховки от риска быть выключенным из-за экстремальных значений. То, что я вижу, - это довольно плавный градиент между средним и медианным, который здесь ожидается, потому что все возможные значения 1, 2, 3, 4, 5 присутствуют в данных. Ожидается большой скачок в последовательности с изолированным выбросом.

С обрезанными средствами нет обязанности обрезать равные числа в каждом хвосте, но я не буду на этом останавливаться.

В-третьих, пример - обзоры Amazon. Контекст всегда уместен в руководстве, как вы хотите, чтобы данные суммировались . В случае обзоров Amazon лучший ответ - прочитать отзывы! Как высокие, так и низкие оценки могут быть ложными (косвенно: автор этой книги - мой друг) и / или не иметь отношения к вашему решению (явно: повторный продавец относился ко мне плохо), для меня нет очевидного Вывод о том, как суммировать такие данные, и, на самом деле, показать вам, что Amazon является максимально информативным.

В-четвертых, и самое элементарное, но также и фундаментальное из всех, кто заставляет вас выбирать? Иногда следует сообщать среднее и медиану (и, как уже говорилось, график распределения).

Ник Кокс
источник