Вот, пожалуйста, три примера. Я сделал код гораздо менее эффективным, чем в реальном приложении, чтобы сделать логику более понятной (надеюсь).
# We'll assume estimation of a Poisson mean as a function of x
x <- runif(100)
y <- rpois(100,5*x) # beta = 5 where mean(y[i]) = beta*x[i]
# Prior distribution on log(beta): t(5) with mean 2
# (Very spread out on original scale; median = 7.4, roughly)
log_prior <- function(log_beta) dt(log_beta-2, 5, log=TRUE)
# Log likelihood
log_lik <- function(log_beta, y, x) sum(dpois(y, exp(log_beta)*x, log=TRUE))
# Random Walk Metropolis-Hastings
# Proposal is centered at the current value of the parameter
rw_proposal <- function(current) rnorm(1, current, 0.25)
rw_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.25, log=TRUE)
rw_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.25, log=TRUE)
rw_alpha <- function(proposal, current) {
# Due to the structure of the rw proposal distribution, the rw_p_proposal_given_current and
# rw_p_current_given_proposal terms cancel out, so we don't need to include them - although
# logically they are still there: p(prop|curr) = p(curr|prop) for all curr, prop
exp(log_lik(proposal, y, x) + log_prior(proposal) - log_lik(current, y, x) - log_prior(current))
}
# Independent Metropolis-Hastings
# Note: the proposal is independent of the current value (hence the name), but I maintain the
# parameterization of the functions anyway. The proposal is not ignorable any more
# when calculation the acceptance probability, as p(curr|prop) != p(prop|curr) in general.
ind_proposal <- function(current) rnorm(1, 2, 1)
ind_p_proposal_given_current <- function(proposal, current) dnorm(proposal, 2, 1, log=TRUE)
ind_p_current_given_proposal <- function(current, proposal) dnorm(current, 2, 1, log=TRUE)
ind_alpha <- function(proposal, current) {
exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal)
- log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current))
}
# Vanilla Metropolis-Hastings - the independence sampler would do here, but I'll add something
# else for the proposal distribution; a Normal(current, 0.1+abs(current)/5) - symmetric but with a different
# scale depending upon location, so can't ignore the proposal distribution when calculating alpha as
# p(prop|curr) != p(curr|prop) in general
van_proposal <- function(current) rnorm(1, current, 0.1+abs(current)/5)
van_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.1+abs(current)/5, log=TRUE)
van_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.1+abs(proposal)/5, log=TRUE)
van_alpha <- function(proposal, current) {
exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal)
- log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current))
}
# Generate the chain
values <- rep(0, 10000)
u <- runif(length(values))
naccept <- 0
current <- 1 # Initial value
propfunc <- van_proposal # Substitute ind_proposal or rw_proposal here
alphafunc <- van_alpha # Substitute ind_alpha or rw_alpha here
for (i in 1:length(values)) {
proposal <- propfunc(current)
alpha <- alphafunc(proposal, current)
if (u[i] < alpha) {
values[i] <- exp(proposal)
current <- proposal
naccept <- naccept + 1
} else {
values[i] <- exp(current)
}
}
naccept / length(values)
summary(values)
Для ванильного пробоотборника мы получаем:
> naccept / length(values)
[1] 0.1737
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.843 5.153 5.388 5.378 5.594 6.628
что является малой вероятностью принятия, но все же ... настройка предложения поможет здесь, или принятие другого. Вот результаты предложения случайной прогулки:
> naccept / length(values)
[1] 0.2902
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.718 5.147 5.369 5.370 5.584 6.781
Подобные результаты, как можно было бы надеяться, и лучшая вероятность принятия (нацеливание на ~ 50% с одним параметром.)
И, для полноты, сэмплер независимости:
> naccept / length(values)
[1] 0.0684
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.990 5.162 5.391 5.380 5.577 8.802
Поскольку он не «приспосабливается» к форме задней части тела, он, как правило, имеет наименьшую вероятность принятия и его сложнее всего настроить для этой проблемы.
Обратите внимание, что, вообще говоря, мы бы предпочли предложения с более толстыми хвостами, но это совсем другая тема.
Видеть:
Статья Википедии является хорошим комплементарным чтением. Как вы можете видеть, у Метрополиса также есть «коэффициент коррекции», но, как упоминалось выше, Гастингс представил модификацию, которая допускает несимметричное распределение предложений.
Алгоритм Метрополис реализован в пакете R
mcmc
под командойmetrop()
.Другие примеры кода:
http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/metrop/
http://pcl.missouri.edu/jeff/node/322
http://darrenjw.wordpress.com/2010/08/15/metropolis-hastings-mcmc-algorithms/
источник
dnorm(can,mu,sig)/dnorm(x,mu,sig)
в сэмплере независимости первой ссылки не равен 1. Я думал, что он должен был быть равен 1 при использовании симметричного распределения предложений. Это потому, что это независимый пробоотборник, а не обычный MH не-случайного блуждания? Если да, то каков коэффициент Гастингса для простого MH без случайного блуждания?