Я пытаюсь понять динамическое искажение времени для сравнения временных рядов вместе. У меня есть три набора данных временного ряда, как это:
T1 <- structure(c(0.000213652387565, 0.000535045478866, 0, 0, 0.000219346347883,
0.000359669104424, 0.000269469145783, 0.00016051364366, 0.000181950509461,
0.000385579332948, 0.00078170803205, 0.000747244535774, 0, 0.000622858922454,
0.000689084895259, 0.000487983408564, 0.000224744353298, 0.000416449765747,
0.000308388157895, 0.000198906016907, 0.000179549331179, 9.06289650172e-05,
0.000253506844685, 0.000582896161212, 0.000386473429952, 0.000179839942451,
0, 0.000275608635737, 0.000622665006227, 0.00036075036075, 0.00029057097196,
0.000353232073472, 0.000394710874285, 0.000207555002076, 0.000402738622634,
0, 0.000309693403531, 0.000506521463847, 0.000226988991034, 0.000414164423276,
9.6590360282e-05, 0.000476689865573, 0.000377572210685, 0.000378967314069,
9.25240562546e-05, 0.000172309813044, 0.000447627573859, 0, 0.000589333071408,
0.000191699415317, 0.000362943471554, 0.000287549122975, 0.000311688311688,
0.000724112961622, 0.000434656621269, 0.00122292103424, 0.00177549812586,
0.00308008213552, 0.00164338537387, 0.00176056338028, 0.00180072028812,
0.00258939580764, 0.00217548948513, 0.00493015612161, 0.00336344416683,
0.00422716412424, 0.00313360554553, 0.00540144648906, 0.00425728829246,
0.0046828437633, 0.00397219463754, 0.00501656412683, 0.00492700729927,
0.00224424911165, 0.000634696755994, 0.00120550276557, 0.00125313283208,
0.00164551010813, 0.00143575017947, 0.00237006940918, 0.00236686390533,
0.00420336269015, 0.00329840900272, 0.00242005185825, 0.00326554846371,
0.006217237596, 0.0037103784586, 0.0038714672861, 0.00455830066551,
0.00361747518783, 0.00304147465438, 0.00476801760499, 0.00569875504121,
0.00583855136233, 0.0050566695728, 0.0042220072126, 0.00408237321963,
0.00255222610833, 0.00123507616303, 0.00178136133508, 0.00147434637311,
0.00126742712294, 0.00186590371937, 0.00177226406735, 0.00249154653853,
0.00549127279859, 0.00349072202829, 0.00348027842227, 0.00229555236729,
0.00336862367661, 0.00383477593952, 0.00273999412858, 0.00349618180145,
0.00376108175875, 0.00383351588171, 0.00368928059028, 0.00480028982882,
0.00388823582602, 0.00745054380406, 0.0103754506287, 0.00822677278011,
0.00778350981989, 0.0041831792162, 0.00537228238059, 0.00723645609231,
0.0144428396845, 0.00893333333333, 0.0106231171714, 0.0158367059652,
0.01811729548, 0.0207095263821, 0.0211700064641, 0.017604180993,
0.0165804327375, 0.0188679245283, 0.0191859923629, 0.0269251008595,
0.0351239669421, 0.0283510318573, 0.0346557651212, 0.0270022042616,
0.0260845175767, 0.0349758630112, 0.0207069247809, 0.0106362024818,
0.00981093510475, 0.00916507201128, 0.00887198986058, 0.0073929115025,
0.00659077291791, 0.00716191546131, 0.00942304513143, 0.0106886280007,
0.0123527175979, 0.0171022290546, 0.0142909490656, 0.0157642220699,
0.0265140538974, 0.0194395354708, 0.0241685144124, 0.0229897123662,
0.017921889568, 0.0155115839714, 0.0145263157895, 0.017609281127,
0.0157671315949, 0.0190258751903, 0.0138453217956, 0.00958058335108,
0.0122924304507, 0.00929741151611, 0.00885235535884, 0.00509319462505,
0.0061314863177, 0.0063104189044, 0.00729117134253, 0.010843373494,
0.0217755443886, 0.0181687353841, 0.0155402963498, 0.017310022503,
0.0214746959003, 0.026357827476, 0.0194751217195, 0.0196820590462,
0.0184317400812, 0.0130208333333, 0.0128666035951, 0.0120045731707,
0.0122374253228, 0.00874940561103, 0.0114368092263, 0.00922893718369,
0.00479041916168, 0.00644107774653, 0.00775830595108, 0.00829578041786,
0.00681348095875, 0.00573782551125, 0.00772002058672, 0.0112488083889,
0.00908907291456, 0.0157722638969, 0.00994270306707, 0.0134179772039,
0.0126050420168, 0.0113648781554, 0.0153894803415, 0.0126959699913,
0.0116655865198, 0.0112065745237, 0.0122006737686, 0.010251878038,
0.010891174691, 0.0148273273273, 0.0138516532618, 0.0136552722011,
0.00986993819758, 0.0097852677358, 0.00889011089726, 0.00816723383568,
0.00917641660931, 0.00884466556108, 0.0182179529646, 0.0183156760639,
0.0217806648835, 0.0171099125907, 0.0186579938377, 0.019360390076,
0.0144603654529, 0.0177730696798, 0.0153226598566, 0.0134016909516,
0.0126480805202, 0.0115501519757, 0.0127156322248, 0.0124326204138,
0.0240245215806, 0.0130234933606, 0.0144222706691, 0.00854005693371,
0.0053560967445, 0.00504132231405, 0.00288778877888, 0.00593526847816,
0.00455653279644, 0.00433014040152, 0.00535770564135, 0.0131095962244,
0.0126319758673, 0.0154982879798, 0.0125940464508, 0.0169948745616,
0.0257535512184, 0.0256175663312, 0.0265191262043, 0.0228974403622,
0.0193122555411, 0.0165794768612, 0.015658837248, 0.0168208578638,
0.0129912843282, 0.0119498443154, 0.0112663755459, 0.00838112042347,
0.00925767186696, 0.0113408269771, 0.0210861519924, 0.0156036134684,
0.0121687119728, 0.011006497812, 0.0107891491985, 0.0134615384615,
0.0147229755909, 0.015756893641, 0.0176257128046, 0.016776075857,
0.0169553999263, 0.0179193118984, 0.0190055672874, 0.0183088625509,
0.0155489923558, 0.0152507401094, 0.0160748342567, 0.0161532350605,
0.0139190952588, 0.0161469457497, 0.0118186629035, 0.0109259765092,
0.00950587391265, 0.00928986154533, 0.00815520645549, 0.00702576112412,
0.00709539362541, 0.00827287768869, 0.0104688211197, 0.0130375888927,
0.0160891089109, 0.0188415910677, 0.0203265044814, 0.0183175033921,
0.0139940353292, 0.0124648170487, 0.0131685758095, 0.00957428620277,
0.0119647893342, 0.00835800104475, 0.0101892285298, 0.00904207699194,
0.00772134522992, 0.00740740740741, 0.00776823249863, 0.00642254601227,
0.00484237572883, 0.00361539964823, 0.00414811817078, 0.00358072916667,
0.00433306007729, 0.00485008818342, 0.00905280804694, 0.00931847250137,
0.00779271381259, 0.00779912497622, 0.00908230842006, 0.0058152538582,
0.0102777777778, 0.00807537012113, 0.00648535564854, 0.0145492582731,
0.00694127317563, 0.00759878419453, 0.00789242911429, 0.00635050701629,
0.00785233530492, 0.00607964332759, 0.00531968282646, 0.00361944157187,
0.00305157155935, 0.00276327909119, 0.00318820364651, 0.00184464029514,
0.00412550211703, 0.00516567972786, 0.00463655399342, 0.00702897308418,
0.0100714154917, 0.00791168353266, 0.00959190791768, 0.00736,
0.00738007380074, 0.012573964497, 0.0117919562013, 0.00842919476398,
0.00778887565289, 0.00623967700496, 0.0062232955601, 0.00447815755803,
0.00511135450894, 0.00502557659517, 0.00330328263712), .Tsp = c(1,
15.9583333333333, 24), class = "ts")
T2 <- structure(c(0, 0, 0, 0, 0.000109673173942, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.66183574879e-05, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.43930526713e-05,
0, 0, 0, 8.95255147717e-05, 0, 0, 0, 0, 0.000191699415317, 0.000207792207792,
0, 0, 0, 0.00019727756954, 0.000205338809035, 0.000205423171734,
0.000704225352113, 0.000450180072029, 0.000493218249075, 0.000120860526952,
0.000410846343468, 0.000384393619066, 0.000643264105863, 0.000189915487608,
0.000915499404925, 0.000185099490976, 0.000936568752661, 0.000451385754266,
0.000757217226692, 0.000273722627737, 0.000187020759304, 0.000211565585331,
0.000141823854772, 9.63948332369e-05, 0.000117536436295, 0.000287150035894,
0, 0, 0.000400320256205, 0.000388048117967, 0.000345721694036,
0.000296868042155, 0.000609533097647, 0.000424043252412, 0.000290360046458,
0.000546996079861, 0.000556534644282, 0.00036866359447, 0.000275077938749,
0.000964404699281, 0.00152310035539, 0.00113339145597, 0.00061570938517,
0.000362877619523, 0.000472634464505, 0.000102923013586, 0.000187511719482,
0.000294869274622, 0.00011522064754, 0.000248787162582, 0, 0.00035593521979,
0.000392233771328, 0.000551166636046, 0.000165727543918, 0.000143472022956,
0.00012030798845, 0.000438260107374, 0.000195713866327, 0.000184009568498,
0.000537297394108, 0.000365096750639, 0.000102480016397, 0.000452857531021,
0.000180848177955, 0.000770745910765, 0.00219818869252, 0.000357685773048,
0.000362023712553, 0.000660501981506, 0.000419709560984, 0.000488949735967,
0.00177758026886, 4e-04, 0.000475661962898, 0.000879816998064,
0.0014942099365, 0.00378173960022, 0.00274725274725, 0.00192545729611,
0.0016462841016, 0.00176238855484, 0.00260780478718, 0.00447289949132,
0.0034435261708, 0.00290522941294, 0.002694416055, 0.0041329904482,
0.00729244577412, 0.0296930503689, 0.00982375036117, 0.00453023439039,
0.00327031170158, 0.00221573169503, 0.00211237853823, 0.00108719286801,
0.00131815458358, 0.000983008004494, 0.00132253265002, 0.00227790432802,
0.00247054351957, 0.00307455803228, 0.0029314767314, 0.00222755311857,
0.00492610837438, 0.00454430699318, 0.00753880266075, 0.00671845475541,
0.00590490003108, 0.00288356368698, 0.00294736842105, 0.00248601615911,
0.00197089144936, 0.00326157860404, 0.00302866414278, 0.00202256759634,
0.00258788009489, 0.00169043845747, 0.00137000737696, 0.000433463372345,
0.000908368343363, 0.000805585392052, 0.00142653352354, 0.00189328743546,
0.00558347292016, 0.00161899622234, 0.00162631008312, 0.00276960360048,
0.00585673524553, 0.00519169329073, 0.0045125282033, 0.00562344544176,
0.00322815786733, 0.00330528846154, 0.00255439924314, 0.00285823170732,
0.00240894199268, 0.00218735140276, 0.00201826045171, 0.00168701002282,
0.000460617227084, 0.00127007166833, 0.00109529025192, 0.000819336337567,
0.00158170093685, 0.000588494924231, 0.00120089209127, 0.00305052430887,
0.00161583518481, 0.00211579149837, 0.0010111223458, 0.00346270379455,
0.00228091236495, 0.00207627581685, 0.00295140718878, 0.0022121765894,
0.00240718451995, 0.00224131490474, 0.0031867431485, 0.00176756517897,
0.00233382314807, 0.00178303303303, 0.00169794459339, 0.00162778079219,
0.000737939304492, 0.00135906496331, 0.000733205022454, 0.000875060768109,
0.00114705207616, 0.000967385295744, 0.00182179529646, 0.00359130903214,
0.00420328620558, 0.00446345545843, 0.00376583361862, 0.00659687365553,
0.00433810963586, 0.00353107344633, 0.00333955407131, 0.00341788091383,
0.0024939877082, 0.00538428137212, 0.00906989151698, 0.00773778473309,
0.0210421671775, 0.00859720803541, 0.00511487506289, 0.00406669377796,
0.00117164616286, 0.00206611570248, 0.00107260726073, 0.00148381711954,
0.000741761152909, 0.00104973100643, 0.00110305704381, 0.00209753539591,
0.00452488687783, 0.00486574157506, 0.00850507033039, 0.0101159967629,
0.0163991223005, 0.0150452373691, 0.0156443766097, 0.0112310639039,
0.00635593220339, 0.00627766599598, 0.00583041812427, 0.00622371740959,
0.00624897220852, 0.00420769166036, 0.00305676855895, 0.00291133656815,
0.00120006857535, 0.00501806503412, 0.00490575781048, 0.00593119810202,
0.00226874291018, 0.00304999336958, 0.00339087546239, 0.00541958041958,
0.00445563734986, 0.00431438754455, 0.0038016243304, 0.0037928519329,
0.00491460867428, 0.00460782305959, 0.00508734881935, 0.00300725278613,
0.00390896455872, 0.00367811967345, 0.00953591862683, 0.00529614264278,
0.00243584167029, 0.00427167876976, 0.00291056623743, 0.00227624510607,
0.00439422473321, 0.00232246538633, 0.00317623830372, 0.00263466042155,
0.00180200473026, 0.00190912562047, 0.0034896070399, 0.00338638672536,
0.00548090523338, 0.00697836706211, 0.00720230473752, 0.00746268656716,
0.00367056664373, 0.0032167269803, 0.00523135203391, 0.00299196443837,
0.00299119733356, 0.00287306285913, 0.00154657933042, 0.00214861235452,
0.00163006177076, 0.00157407407407, 0.00137086455858, 0.00124616564417,
0.000790591955727, 0.00107484854407, 0.00121408336706, 0.00108506944444,
0.00105398758637, 0.000881834215168, 0.00184409052808, 0.00237529691211,
0.0013637249172, 0.00190222560396, 0.00264900662252, 0.00156564526951,
0.00263888888889, 0.00183531139117, 0.00303347280335, 0.0120768352986,
0.00365330167139, 0.00351443768997, 0.00263080970476, 0.0029703984431,
0.00265143789517, 0.0014185834431, 0.00150557061126, 0.00144777662875,
0.00111890957176, 0.000716405690308, 0.000797050911627, 0.000512400081984,
0.000868526761481, 0.00113392969636, 0.00134609632067, 0.00240013715069,
0.00128181651712, 0.00110395584177, 0.00156958493198, 0.00208,
0.00184501845018, 0.00110946745562, 0.000736997262582, 0.00208250694169,
0.00229084578026, 0.00137639933933, 0.00111462010032, 0.000822518735149,
0.00200803212851, 0.000987166831194, 0.00041291032964), .Tsp = c(1,
15.9583333333333, 24), class = "ts")
T3 <- structure(c(0.00192287148809, 0.00149812734082, 0.00192410475681,
0.00151122625216, 0.00120640491336, 0.00167845582065, 0.00121261115602,
0.000802568218299, 0.00109170305677, 0.00250626566416, 0.00273597811218,
0.00242854474127, 0.00160915430002, 0.00124571784491, 0.00192943770673,
0.00329388800781, 0.00191032700303, 0.00156168662155, 0.00174753289474,
0.0014917951268, 0.00143639464943, 0.000543773790103, 0.000929525097178,
0.00141560496294, 0.000966183574879, 0.000719359769805, 0.00190740419629,
0.00137804317869, 0.00197177251972, 0.001443001443, 0.00203399680372,
0.00158954433063, 0.00256562068285, 0.00228310502283, 0.00302053966975,
0.00227352221056, 0.00263239393001, 0.00202608585539, 0.00272386789241,
0.00269206875129, 0.0027045300879, 0.00276480122033, 0.00405890126487,
0.00341070582662, 0.00351591413768, 0.00336004135436, 0.00358102059087,
0.00257289879931, 0.00235733228563, 0.00239624269146, 0.00136103801833,
0.000862647368926, 0.00145454545455, 0.00168959691045, 0.00246305418719,
0.0020964360587, 0.00335371868219, 0.00390143737166, 0.00349219391947,
0.00334507042254, 0.00255102040816, 0.00332922318126, 0.00386753686246,
0.00246507806081, 0.00432442821449, 0.00312442565705, 0.00408318298357,
0.00375354756019, 0.00416473854697, 0.00263942103023, 0.0028888688273,
0.00321817321344, 0.00310218978102, 0.002150738732, 0.00296191819464,
0.00134732662034, 0.00221708116445, 0.00152797367184, 0.00157932519742,
0.00220077873709, 0.00207100591716, 0.00260208166533, 0.00310438494373,
0.00311149524633, 0.00385928454802, 0.00292575886871, 0.00222622707516,
0.00329074719319, 0.00282614641262, 0.00287542899545, 0.00221198156682,
0.00311754997249, 0.00315623356128, 0.00287696733796, 0.00296425457716,
0.00263875450787, 0.00208654631226, 0.00179601096512, 0.00164676821737,
0.00206262891431, 0.00235895419697, 0.00241963359834, 0.0028610523697,
0.00516910352976, 0.00160170848905, 0.00254951951363, 0.00275583318023,
0.00298309579052, 0.00286944045911, 0.00288739172281, 0.00394434096636,
0.00254428026226, 0.00285214831171, 0.0034924330617, 0.00246440306681,
0.00266448042632, 0.00389457476678, 0.00253187449136, 0.00171276869059,
0.00184647850171, 0.00134132164893, 0.00153860077835, 0.000990752972259,
0.00117518677075, 0.00312927831019, 0.00188867903566, 0.0024,
0.00269541778976, 0.00263945099419, 0.00242809114681, 0.00378173960022,
0.00274725274725, 0.00165039196809, 0.00211665098777, 0.00290275761974,
0.00149017416411, 0.00105244693913, 0.00309917355372, 0.00240432779002,
0.00297314875035, 0.0015613519471, 0.00196335078534, 0.00227707441479,
0.00279302706347, 0.00295450068938, 0.00316811446091, 0.00211501661799,
0.00168990283059, 0.00195694716243, 0.00131815458358, 0.00112343771942,
0.00214911555629, 0.00157701068863, 0.00171037628278, 0.00230591852421,
0.00183217295713, 0.00102810143934, 0.00130396986381, 0.00151476899773,
0.00188470066519, 0.00220449296662, 0.00238267895991, 0.00238639753406,
0.00147368421053, 0.00113942407292, 0.0018192844148, 0.00152207001522,
0.00151433207139, 0.00117096018735, 0.000862626698296, 0.00095087163233,
0.00137000737696, 0.00119202427395, 0.00170319064381, 0.000805585392052,
0.0012680297987, 0.00189328743546, 0.00186115764005, 0.000719553876597,
0.000903505601735, 0.000865501125151, 0.00210241778045, 0.00146432374867,
0.00130625816411, 0.0011895749973, 0.00135374362178, 0.00120192307692,
0.00160832544939, 0.0015243902439, 0.00240894199268, 0.00218735140276,
0.00230658337338, 0.00188548179022, 0.0016582220175, 0.00263086274154,
0.00155166119022, 0.00204834084392, 0.00194670884536, 0.00308959835221,
0.00154400411734, 0.00152526215443, 0.00343364976772, 0.00269282554337,
0.00235928547354, 0.00230846919636, 0.00300120048019, 0.00327833023713,
0.00347844418678, 0.00259690295277, 0.00157392833997, 0.00345536047815,
0.00336884275699, 0.0023862129916, 0.00216094735932, 0.00478603603604,
0.00330652368186, 0.00551636824019, 0.00313624204409, 0.00253692126484,
0.00201631381175, 0.00243072435586, 0.00229410415233, 0.00386954118297,
0.00298111957602, 0.00305261267732, 0.0038211692778, 0.00334759159383,
0.00479287915098, 0.0045891294995, 0.00525831471014, 0.00800376647834,
0.0076613299283, 0.00638604065479, 0.00587868531219, 0.00633955709944,
0.00453494575849, 0.00617283950617, 0.00314804075884, 0.00425604358189,
0.00536642629549, 0.00422936152908, 0.00234329232572, 0.00454545454545,
0.00305280528053, 0.00389501993879, 0.0040267034015, 0.00275554389188,
0.00409706901986, 0.00506904387345, 0.0065987933635, 0.00594701748063,
0.00343473994112, 0.00579983814405, 0.00750664048966, 0.00365965233303,
0.00467423447486, 0.00348250043531, 0.00464471968709, 0.00603621730382,
0.00358154256205, 0.00445752733389, 0.00501562243052, 0.0035344609947,
0.00410480349345, 0.00467578297309, 0.00265729470255, 0.00210758731433,
0.00223771408899, 0.00218998083767, 0.00309374033206, 0.00291738496221,
0.00184956843403, 0.00297202797203, 0.00329329717164, 0.00318889514162,
0.00397442543632, 0.00481400437637, 0.002580169554, 0.00440303092361,
0.00335956997504, 0.00318415000884, 0.00269284225156, 0.00242217637032,
0.00381436745073, 0.00238326418925, 0.0037407568508, 0.00290474156343,
0.00335156112189, 0.00227624510607, 0.00376647834275, 0.00223313979455,
0.00197441840501, 0.00214676034348, 0.00225250591283, 0.00140002545501,
0.0034896070399, 0.00220115137149, 0.002828854314, 0.00418702023726,
0.00176056338028, 0.00393487109905, 0.00217939894471, 0.00331724969843,
0.00234508884279, 0.00282099504189, 0.00239295786685, 0.00269893783737,
0.00263828238719, 0.00250671441361, 0.00231640356898, 0.00231481481481,
0.00127947358801, 0.0017254601227, 0.00207530388378, 0.00185655657612,
0.00131525698098, 0.00227864583333, 0.0018737557091, 0.00220458553792,
0.00184409052808, 0.00109629088251, 0.00253263198909, 0.00228267072475,
0.00170293282876, 0.00134198165958, 0.000833333333333, 0.00269179004038,
0.00198744769874, 0.00209205020921, 0.00146132066855, 0.00113981762918,
0.00185131053298, 0.00194612311789, 0.00203956761167, 0.00111460127673,
0.00170631335943, 0.00186142709411, 0.00183094293561, 0.00194452973084,
0.0014944704593, 0.00153720024595, 0.00184561936815, 0.00151190626181,
0.000897397547113, 0.00222869878279, 0.00201428309833, 0.00202391904324,
0.00244157656087, 0.00256, 0.00184501845018, 0.00160256410256,
0.00115813855549, 0.0016858389528, 0.001741042793, 0.0026610387227,
0.00167193015047, 0.00201060135259, 0.00219058050383, 0.00233330341919,
0.000963457435827), .Tsp = c(1, 15.9583333333333, 24), class = "ts")
Я знаю, что T1 и T2 коррелируют и рассматривают их как основную правду, поэтому любая метрика расстояния должна указывать мне, что (T1, T2) ближе, чем (T2, T3) и (T1, T3). Тем не менее, при использовании dtw
в R, я получаю следующее:
> dtw(T1, T2, k = TRUE)$distance; dtw(T1, T3, k = TRUE)$distance; dtw(T3, T2, k = TRUE)$distance
[1] 1.107791
[1] 1.568011
[1] 0.4102962
Может кто-нибудь объяснить, как использовать динамическое искажение времени для запросов ближайшего соседа?
r
time-series
clustering
легенда
источник
источник
Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Bound
Даниэль Лемир и др. al с кодом, предоставленным на code.google.com/p/lbimproved. Однако я пытаюсь понять этот показатель перед его использованием.Ответы:
Динамическая деформация времени делает конкретное предположение для вашего набора данных: один вектор представляет собой нелинейную серию временных ограничений другого. Но это также предполагает, что фактические значения находятся в том же масштабе.
DTW - это не ваше волшебное оружие для решения всех ваших задач по согласованию временных рядов. Это делает определенные предположения о типе сходства, в котором вы заинтересованы . Если это не соответствует вашим данным, это не будет работать хорошо. Судя по ряду данных, которыми вы поделились, вам не требуется временное выравнивание (что делает DTW), но вместо этого требуется некоторая соответствующая нормализация и, возможно, преобразования Фурье. Пересечение трешхолдов также может вам помочь, см., Например:
рядам на основе пороговых запросов Йоханнес Асфалг, Ханс-Петер Кригель, Пер Крёгер, Питер Кунатх, Алексей Пряхин и Матиас Ренц, EDBT 2006
источник
В 1980-х годах динамическое искажение времени было методом, используемым для сопоставления шаблонов при распознавании речи. Цель состояла в том, чтобы попытаться сопоставить временные ряды анализируемой речи с сохраненными шаблонами, обычно целыми словами. Трудность в том, что люди говорят по-разному. DTW использовался для регистрации неизвестного шаблона в шаблоне. Это называлось «резиновый лист» соответствия. По сути, вы просматриваете некоторые ограниченные возможности того, как временные ряды могут быть локально растянуты для оптимизации глобального соответствия. Было показано, что этот подход в значительной степени совпадает со скрытыми марковскими моделями.
источник
Во-первых, вы говорите «метрика динамического искажения времени», однако DTW является мерой расстояния, а не метрикой (она не подчиняется треугольному неравенству).
В статье [a] сравнивается DTW с 12 альтернативами на 43 наборах данных, DTW действительно работает очень хорошо для большинства проблем.
Если вы хотите узнать больше о DTW, вы можете взглянуть на учебник Keoghs http://www.cs.ucr.edu/~eamonn/Keogh_Time_Series_CDrom.zip (предупреждение 500 мегабайт)
Проход Пегги.
Существует также учебник по SAX http://www.cs.ucr.edu/~eamonn/SIGKDD_2007.ppt
[a] Сяоюе Ван, Хуэй Дин, Гоце Трайчевски, Питер Шойерманн, Имонн Дж. Кеог: экспериментальное сравнение методов представления и мер расстояния для данных временных рядов CoRR abs / 1012.2789: (2010)
источник