Как интерпретировать p-значения 0 или 1?

9

Я запустил ANOVA, обнаружив, например, взаимодействие между полом и классом, по которому я хочу узнать, в каких классах мальчики и девочки отличаются, но во многих случаях я нахожу (скорректированные) значения p 0 и 1. Как / почему это возможно? Не кажется правильным ...

as.factor(gender)                     1     16    16.2    2.6377  0.104396    
as.factor(grade)                      7  50077  7153.9 1165.4184 < 2.2e-16 ***
as.factor(gender):as.factor(grade)    7    132    18.9    3.0795  0.003056 ** 
Residuals                          7747  47555     6.1                        
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = rating ~ as.factor(gender) * as.factor(grade), data = users_c[users_c$grade %in% 1:8, ])

$`as.factor(gender)`
           diff        lwr        upr     p adj
m-f -0.09135851 -0.2016276 0.01891058 0.1043964

$`as.factor(grade)`
         diff        lwr       upr     p adj
2-1 0.3823566 -0.5454435  1.310157 0.9169296
3-1 1.9796023  1.1649854  2.794219 0.0000000
4-1 3.9558543  3.1534606  4.758248 0.0000000
5-1 5.7843111  4.9829529  6.585669 0.0000000
6-1 7.0752044  6.2708610  7.879548 0.0000000
7-1 8.4868609  7.6776332  9.296089 0.0000000
8-1 9.3867231  8.5626511 10.210795 0.0000000
3-2 1.5972457  1.0395026  2.154989 0.0000000
4-2 3.5734976  3.0337642  4.113231 0.0000000
5-2 5.4019544  4.8637616  5.940147 0.0000000
6-2 6.6928478  6.1502200  7.235476 0.0000000
7-2 8.1045042  7.5546625  8.654346 0.0000000
8-2 9.0043665  8.4329024  9.575831 0.0000000
4-3 1.9762520  1.6694948  2.283009 0.0000000
5-3 3.8047088  3.5006705  4.108747 0.0000000
6-3 5.0956021  4.7837806  5.407424 0.0000000
7-3 6.5072586  6.1830461  6.831471 0.0000000
8-3 7.4071208  7.0474558  7.766786 0.0000000
5-4 1.8284568  1.5588754  2.098038 0.0000000
6-4 3.1193501  2.8410202  3.397680 0.0000000
7-4 4.5310066  4.2388618  4.823151 0.0000000
8-4 5.4308688  5.0998193  5.761918 0.0000000
6-5 1.2908933  1.0155630  1.566224 0.0000000
7-5 2.7025498  2.4132612  2.991838 0.0000000
8-5 3.6024120  3.2738803  3.930944 0.0000000
7-6 1.4116565  1.1141985  1.709114 0.0000000
8-6 2.3115187  1.9757711  2.647266 0.0000000
8-7 0.8998622  0.5525763  1.247148 0.0000000

$`as.factor(gender):as.factor(grade)`
                diff         lwr        upr     p adj
m:1-f:1  0.005917865 -1.77842639  1.7902621 1.0000000
f:2-f:1  0.318074165 -1.28953805  1.9256864 0.9999988
m:2-f:1  0.442924925 -1.11597060  2.0018205 0.9998619
f:3-f:1  1.769000750  0.35262166  3.1853798 0.0020136
m:3-f:1  2.174229216  0.76569156  3.5827669 0.0000147
f:4-f:1  3.738998543  2.34268666  5.1353104 0.0000000
m:4-f:1  4.163719997  2.77146170  5.5559783 0.0000000
f:5-f:1  5.769586591  4.37599400  7.1631792 0.0000000
m:5-f:1  5.816721075  4.42497532  7.2084668 0.0000000
f:6-f:1  7.169439003  5.77317769  8.5657003 0.0000000
m:6-f:1  7.000924045  5.60308216  8.3987659 0.0000000
f:7-f:1  8.330142924  6.92683436  9.7334515 0.0000000
m:7-f:1  8.674488370  7.26930678 10.0796700 0.0000000
f:8-f:1  9.535307293  8.11198164 10.9586329 0.0000000
m:8-f:1  9.251081088  7.82191240 10.6802498 0.0000000
f:2-m:1  0.312156300 -1.12690148  1.7512141 0.9999959
m:2-m:1  0.437007060 -0.94741539  1.8214295 0.9995001
f:3-m:1  1.763082885  0.54136279  2.9848030 0.0000892
m:3-m:1  2.168311350  0.95569081  3.3809319 0.0000001
f:4-m:1  3.733080678  2.53468294  4.9314784 0.0000000
m:4-m:1  4.157802132  2.96412989  5.3514744 0.0000000
f:5-m:1  5.763668726  4.56844048  6.9588970 0.0000000
m:5-m:1  5.810803210  4.61772882  7.0038776 0.0000000
f:6-m:1  7.163521138  5.96518233  8.3618599 0.0000000
m:6-m:1  6.995006180  5.79482611  8.1951862 0.0000000
f:7-m:1  8.324225059  7.11768240  9.5307677 0.0000000
m:7-m:1  8.668570505  7.45984987  9.8772911 0.0000000
f:8-m:1  9.529389428  8.29962271 10.7591561 0.0000000
m:8-m:1  9.245163223  8.00863850 10.4816879 0.0000000
m:2-f:2  0.124850760 -1.02282435  1.2725259 1.0000000
f:3-f:2  1.450926585  0.50586965  2.3959835 0.0000172
m:3-f:2  1.856155050  0.92289131  2.7894188 0.0000000
f:4-f:2  3.420924378  2.50621691  4.3356318 0.0000000
m:4-f:2  3.845645832  2.93713824  4.7541534 0.0000000
f:5-f:2  5.451512425  4.54096139  6.3620635 0.0000000
m:5-f:2  5.498646910  4.59092496  6.4063689 0.0000000
f:6-f:2  6.851364838  5.93673457  7.7659951 0.0000000
m:6-f:2  6.682849880  5.76580854  7.5998912 0.0000000
f:7-f:2  8.012068759  7.08671595  8.9374216 0.0000000
m:7-f:2  8.356414205  7.42822339  9.2846050 0.0000000
f:8-f:2  9.217233128  8.26179669 10.1726696 0.0000000
m:8-f:2  8.933006923  7.96888762  9.8971262 0.0000000
f:3-m:2  1.326075825  0.46649985  2.1856518 0.0000150
m:3-m:2  1.731304290  0.88471145  2.5778971 0.0000000
f:4-m:2  3.296073618  2.46998162  4.1221656 0.0000000
m:4-m:2  3.720795071  2.90157332  4.5400168 0.0000000
f:5-m:2  5.326661665  4.50517434  6.1481490 0.0000000
m:5-m:2  5.373796150  4.55544575  6.1921465 0.0000000
f:6-m:2  6.726514078  5.90050756  7.5525206 0.0000000
m:6-m:2  6.557999120  5.72932364  7.3866746 0.0000000
f:7-m:2  7.887217999  7.04935402  8.7250820 0.0000000
m:7-m:2  8.231563445  7.39056617  9.0725607 0.0000000
f:8-m:2  9.092382368  8.22140761  9.9633571 0.0000000
m:8-m:2  8.808156163  7.92766524  9.6886471 0.0000000
m:3-f:3  0.405228465 -0.13578346  0.9462404 0.4221367
f:4-f:3  1.969997793  1.46166478  2.4783308 0.0000000
m:4-f:3  2.394719246  1.89762897  2.8918095 0.0000000
f:5-f:3  4.000585840  3.49977062  4.5014011 0.0000000
m:5-f:3  4.047720325  3.55206739  4.5433733 0.0000000
f:6-f:3  5.400438253  4.89224417  5.9086323 0.0000000
m:6-f:3  5.231923295  4.71940255  5.7444440 0.0000000
f:7-f:3  6.561142174  6.03389412  7.0883902 0.0000000
m:7-f:3  6.905487620  6.37327442  7.4377008 0.0000000
f:8-f:3  7.766306543  7.18788499  8.3447281 0.0000000
m:8-f:3  7.482080337  6.88942637  8.0747343 0.0000000
f:4-m:3  1.564769328  1.07871270  2.0508260 0.0000000
m:4-m:3  1.989490781  1.51520464  2.4637769 0.0000000
f:5-m:3  3.595357375  3.11716862  4.0735461 0.0000000
m:5-m:3  3.642491860  3.16971239  4.1152713 0.0000000
f:6-m:3  4.995209787  4.50929846  5.4811211 0.0000000
m:6-m:3  4.826694830  4.33626022  5.3171294 0.0000000
f:7-m:3  6.155913709  5.65010831  6.6617191 0.0000000
m:7-m:3  6.500259155  5.98928021  7.0112381 0.0000000
f:8-m:3  7.361078078  6.80213257  7.9200236 0.0000000
m:8-m:3  7.076851872  6.50319055  7.6505132 0.0000000
m:4-f:4  0.424721453 -0.01192015  0.8613631 0.0668946
f:5-f:4  2.030588047  1.58971048  2.4714656 0.0000000
m:5-f:4  2.077722532  1.64271796  2.5127271 0.0000000
f:6-f:4  3.430440460  2.98119847  3.8796825 0.0000000
m:6-f:4  3.261925502  2.80779484  3.7160562 0.0000000
f:7-f:4  4.591144381  4.12045589  5.0618329 0.0000000
m:7-f:4  4.935489827  4.45924616  5.4117335 0.0000000
f:8-f:4  5.796308750  5.26892973  6.3236878 0.0000000
m:8-f:4  5.512082545  4.96913148  6.0550336 0.0000000
f:5-m:4  1.605866594  1.17800058  2.0337326 0.0000000
m:5-m:4  1.653001078  1.23118920  2.0748130 0.0000000
f:6-m:4  3.005719006  2.56923916  3.4421989 0.0000000
m:6-m:4  2.837204048  2.39569420  3.2787139 0.0000000
f:7-m:4  4.166422928  3.70789927  4.6249466 0.0000000
m:7-m:4  4.510768373  4.04654394  4.9749928 0.0000000
f:8-m:4  5.371587296  4.85503631  5.8881383 0.0000000
m:8-m:4  5.087361091  4.55492128  5.6198009 0.0000000
m:5-f:5  0.047134485 -0.37906079  0.4733298 1.0000000
f:6-f:5  1.399852412  0.95913504  1.8405698 0.0000000
m:6-f:5  1.231337454  0.78563790  1.6770370 0.0000000
f:7-f:5  2.560556334  2.09799705  3.0231156 0.0000000
m:7-f:5  2.904901779  2.43669086  3.3731127 0.0000000
f:8-f:5  3.765720703  3.24558412  4.2858573 0.0000000
m:8-f:5  3.481494497  2.94557538  4.0174136 0.0000000
f:6-m:5  1.352717928  0.91787572  1.7875601 0.0000000
m:6-m:5  1.184202970  0.74431204  1.6240939 0.0000000
f:7-m:5  2.513421849  2.05645683  2.9703869 0.0000000
m:7-m:5  2.857767295  2.39508230  3.3204523 0.0000000
f:8-m:5  3.718586218  3.20341827  4.2337542 0.0000000
m:8-m:5  3.434360013  2.90326187  3.9654582 0.0000000
m:6-f:6 -0.168514958 -0.62249009  0.2854602 0.9968060
f:7-f:6  1.160703921  0.69016548  1.6312424 0.0000000
m:7-f:6  1.505049367  1.02895400  1.9811447 0.0000000
f:8-f:6  2.365868290  1.83862318  2.8931134 0.0000000
m:8-f:6  2.081642085  1.53882109  2.6244631 0.0000000
f:7-m:6  1.329218879  0.85401081  1.8044269 0.0000000
m:7-m:6  1.673564325  1.19285330  2.1542753 0.0000000
f:8-m:6  2.534383248  2.00296656  3.0657999 0.0000000
m:8-m:6  2.250157043  1.70328327  2.7970308 0.0000000
m:7-f:7  0.344345446 -0.15203755  0.8407284 0.5648416
f:8-f:7  1.205164369  0.65953016  1.7507986 0.0000000
m:8-f:7  0.920938164  0.36023867  1.4816377 0.0000022
f:8-m:7  0.860818923  0.31038540  1.4112524 0.0000101
m:8-m:7  0.576592718  0.01122178  1.1419637 0.0401330
m:8-f:8 -0.284226205 -0.89329509  0.3248427 0.9688007

источник
7747 остаточных степеней свободы - это много; Возможно ли, что ваш набор данных имеет несколько ответов на человека? Если это так, вы можете либо свернуть ответы каждого человека на среднее значение (автоматически сделанное ezANOVA из пакета ez), либо использовать что-то вроде моделей со смешанными эффектами, которые позволяют вам учитывать повторные измерения (см. EzMixed from пакет ez).
Майк Лоуренс
Я хотел сказать «или использовать что-то более мощное, например, модели со смешанными эффектами». Кроме того, для последней версии кода ezMixed (который позволяет мощно оценить возможные нелинейные эффекты непрерывных переменных, таких как класс, не говоря уже о визуализации через ezPlot2), создайте и запустите эту функцию ezDev при подключении к Интернету: raw.github .com / mike-lawrence / ez / master / R / ezDev.R
Майк Лоуренс

Ответы:

15

Все, что означают 0 и 1, это то, что они очень очень близки к 0 или 1. Если вы посмотрите внимательно, вы увидите, что, когда скорректированное значение p равно 1, эффект почти равен 0, а когда скорректированное значение p равно 0, ближняя граница эффекта очень далеко. Поэтому нет ничего «неправильного» как такового. Теперь посмотрим, сколько значащих цифр у вас есть. 1 или 0 просто означает, что оно ближе к этому значению, чем может быть представлено числом с таким количеством цифр. Не стесняйтесь сообщать что-то вроде <0,0001 или> 0,9999.

Джон
источник
+1 - это просто произвольные пороги округления. И одна из причин, по которой я действительно ненавижу * основанные на сообщениях о значении.
Fomite
3
При таком большом размере выборки неудивительно, что можно найти действительно маленькие значения p. Я думаю, что здесь возникает вопрос о практической и статистической значимости, и меня больше интересовали бы доверительные интервалы, чем р-значения.
Глен
@ Джон, ты имеешь в виду, что возникнет проблема с сообщением значения p как 1.00 или 1.000? Я не вижу ничего плохого в этом.
mark999
Глен, я согласен ...
Джон
mark999, тогда вы должны сообщить о них таким образом. Единственная проблема, с которой я столкнулся, заключается в том, что такие числа обычно интерпретируются как особые. Мы все знаем, что любое значение будет оценочным, но 1,0 и 0,0 могут считаться особыми или вводящими в заблуждение статистических новичков, так же, как они задавали этот вопрос. Путаница, которая вызвала этот вопрос, будет тогда в читателях отчета.
Джон