Почему это множественное вменение низкого качества?

9

Рассмотрим следующий код R:

> data <- data.frame(
            a=c(NA,2,3,4,5,6),b=c(2.2,NA,6.1,8.3,10.2,12.13),c=c(4.2,7.9,NA,16.1,19.9,23))
> data
   a     b    c
1 NA  2.20  4.2
2  2    NA  7.9
3  3  6.10   NA
4  4  8.30 16.1
5  5 10.20 19.9
6  6 12.13 23.0

Как видите, я обработал данные примерно так c = 2*b = 4*a. Таким образом, я ожидаю, что недостающие значения будут рядом a=1, b=2, c=12. Итак, я выполнил анализ:

> imp <- mi(data)
Beginning Multiple Imputation ( Sat Oct 18 03:02:41 2014 ):
Iteration 1 
 Chain 1 : a*  b*  c*  
 Chain 2 : a*  b*  c*  
 Chain 3 : a*  b*  c*  
Iteration 2 
 Chain 1 : a*  b   c   
 Chain 2 : a*  b*  c*  
 Chain 3 : a   b*  c   
Iteration 3 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a*  b*  c*  
Iteration 4 
 Chain 1 : a   b   c   
 Chain 2 : a   b*  c   
 Chain 3 : a*  b   c   
Iteration 5 
 Chain 1 : a   b   c*  
 Chain 2 : a   b*  c   
 Chain 3 : a   b*  c   
Iteration 6 
 Chain 1 : a*  b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 7 
 Chain 1 : a   b   c   
 Chain 2 : a   b*  c   
 Chain 3 : a   b   c*  
Iteration 8 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b*  c*  
Iteration 9 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c*  
 Chain 3 : a   b   c   
Iteration 10 
 Chain 1 : a   b*  c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 11 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 12 
 Chain 1 : a   b   c   
 Chain 2 : a*  b   c   
 Chain 3 : a   b   c   
Iteration 13 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c*  
 Chain 3 : a   b   c*  
Iteration 14 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 15 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c*  
Iteration 16 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b*  c   
Iteration 17 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 18 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 19 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c*  
Iteration 20 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 21 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 22 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 23 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 24 
 Chain 1 : a   b   c*  
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 25 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 26 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 27 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 28 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 29 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
mi converged ( Sat Oct 18 03:02:45 2014 )
Run 20 more iterations to mitigate the influence of the noise...
Beginning Multiple Imputation ( Sat Oct 18 03:02:45 2014 ):
Iteration 1 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 2 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 3 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 4 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 5 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 6 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 7 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 8 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 9 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 10 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 11 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 12 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 13 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 14 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 15 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 16 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 17 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 18 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 19 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Iteration 20 
 Chain 1 : a   b   c   
 Chain 2 : a   b   c   
 Chain 3 : a   b   c   
Reached the maximum iteration, mi did not converge ( Sat Oct 18 03:02:48 2014 )

И наконец соблюдали заполненный набор данных:

> mi.completed(imp)
[[1]]
  a     b    c
1 2  2.20  4.2
2 2  2.20  7.9
3 3  6.10 16.1
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

[[2]]
  a     b    c
1 2  2.20  4.2
2 2  6.10  7.9
3 3  6.10  7.9
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

[[3]]
  a     b    c
1 2  2.20  4.2
2 2  2.20  7.9
3 3  6.10  7.9
4 4  8.30 16.1
5 5 10.20 19.9
6 6 12.13 23.0

Как видите, вмененные значения не соответствуют ожиданиям. На самом деле они выглядят как результат единственного вменения, так как пропущенные значения были взяты из соседних записей.

Что мне не хватает?

Должен отметить, что мои «знания» в области статистики в основном ограничиваются тем, что я смутно помню из вводного курса, который я посещал ~ 14 лет назад. Я просто ищу простой способ вменения пропущенных значений, он не должен быть самым оптимизированным, но он должен иметь какой-то смысл (чего я не могу понять из этих результатов). Вполне может быть, что miэто неправильный подход для достижения того, чего я хочу (возможно, вместо этого следует использовать прогнозирование ), поэтому я открыт для предложений.

Я также попробовал подобный подход mice, который привел к подобным результатам.

ОБНОВЛЕНИЕ Амелия прекрасно работает из коробки. Тем не менее, было бы интересно узнать, чего мне не хватает с ми / мышами.

t0x1n
источник
1
Что вы пытаетесь сделать с множественным вменением вообще? Мне трудно ответить на этот вопрос без некоторого дополнительного контекста. [Я также не нахожу ничего удивительного в том, что качество вашего вменения было низким, учитывая, что вы работаете только с тремя переменными и шестью записями]
Патрик С. Форшер
@ PatrickS.Forscher ты был прав. Я только что попробовал подобный тест с 100 записями, и результаты были, как я ожидал. Пожалуйста, ответьте так, чтобы я мог принять его, и если бы вы могли указать некоторые минимальные значения для успешного вменения, это было бы здорово.
t0x1n
Что бы вы сказали о следующих результатах? > mi.completed(imp) [[1]] a b c 1 0.289 2.20 4.2 2 2.000 2.57 7.9 3 3.000 6.10 12.7 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[2]] a b c 1 0.603 2.20 4.2 2 2.000 5.82 7.9 3 3.000 6.10 13.4 4 4.000 8.30 16.1 5 5.000 10.20 19.9 6 6.000 12.13 23.0 [[3]] a b c 1 1.05 2.20 4.2 2 2.00 4.18 7.9 3 3.00 6.10 12.0 4 4.00 8.30 16.1 5 5.00 10.20 19.9 6 6.00 12.13 23.0Извините за форматирование, но я думаю, что это лучшее, что я мог сделать в комментарии.
Александр Блех
Амелия II специально для многократного вложения временных рядов поперечного сечения (так называемые панельные исследования). MICE предназначен для данных временных рядов не в поперечном сечении (или, по крайней мере, MICE создает плохие значения для таких временных рядов, см. Honaker, J. and King, G. (2010). Что делать с отсутствующими значениями в перекрестных временных рядах данные по разделам. Американский журнал политических наук , 54 (2): 561–581.)
Алексис,
@AleksandrBlekh Они мне тоже не нравятся, я бы ожидал чего-то ближе к x/ 2x/4x
t0x1n

Ответы:

13

Учитывая, что вы используете шесть случаев [записей] и три переменные, качество вашего вменения будет довольно низким.

m

qmqmU¯qmB

BU¯

U¯Bγ

γ=r+2df+3r+1

rBU¯

r=(1+1m)BU¯

Brγγ

dfγBU¯df

df=(m1)(1+mU¯(m+1)B)2

Bdfγ

B

  1. B
  2. B

B

B

qmqmmq

Таким образом, в целом, увеличение количества случаев (или, точнее, уменьшение доли пропущенных значений) повысит качество вменения.

B

B

qm

Таким образом, в целом, увеличение числа переменных, доступных в наборе данных, приведет к повышению качества вменения, если эти дополнительные переменные являются информативными относительно пропущенных значений.

Ссылки

Рубин Д.Б. (1996). Множественное вменение через 18+ лет. Журнал Американской статистической ассоциации , 91, 473-489.

Schafer, JL (1999). Многократное вменение: учебник для начинающих. Статистические методы в медицинских исследованиях , 8, 3-15.

Патрик С. Форшер
источник