“KNN.Score Sklearn” Ответ

KNN Sklearn

X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(X, y)

print(neigh.predict([[1.1]]))

print(neigh.predict_proba([[0.9]]))

Strange Spider

Пример регрессии Python Sklearn KNN

KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
          metric_params=None, n_jobs=1, n_neighbors=8, p=2,
          weights='uniform') 
Motionless Millipede

KNN.Score Sklearn

# Author: Pablo Marcos Manchón
# License: MIT
# https://fda.readthedocs.io/en/latest/auto_examples/plot_k_neighbors_classification.html
  
import skfda
from skfda.ml.classification import KNeighborsClassifier

from sklearn.model_selection import (train_test_split, GridSearchCV,
                                     StratifiedShuffleSplit)

import matplotlib.pyplot as plt
import numpy as np

X, y = skfda.datasets.fetch_growth(return_X_y=True, as_frame=True)
X = X.iloc[:, 0].values
y = y.values

# Plot samples grouped by sex
X.plot(group=y.codes, group_names=y.categories)

y = y.codes

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
                                                    stratify=y, random_state=0)
                                                    
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

pred = knn.predict(X_test)
print(pred)

# The score() method allows us to calculate 
# the mean accuracy for the test data.
score = knn.score(X_test, y_test)
print(score)
Fancy Falcon

Ответы похожие на “KNN.Score Sklearn”

Вопросы похожие на “KNN.Score Sklearn”

Смотреть популярные ответы по языку

Смотреть другие языки программирования