Работать в области интеллектуального анализа данных без PhD

73

Некоторое время я был очень заинтересован в интеллектуальном анализе данных и машинном обучении , отчасти потому, что я специализировался в этой области в школе, а также потому, что я действительно гораздо более взволнован, пытаясь решить проблемы, которые требуют немного больше размышлений, чем просто программирование. знания и чье решение может иметь несколько форм. У меня нет опыта исследователей / ученых, я из области компьютерных наук с акцентом на анализ данных, у меня есть степень магистра, а не степень доктора наук. В настоящее время у меня есть позиция, связанная с анализом данных, даже если это не является основным направлением моей деятельности, но я, по крайней мере, хорошо с ней знаком.

Когда я некоторое время назад брал интервью для работы в нескольких компаниях и разговаривал с несколькими рекрутерами, я обнаружил общую тенденцию, по которой люди, кажется, думают, что вам нужно иметь докторскую степень, чтобы заниматься машинным обучением , даже если я могу быть обобщать слишком много (некоторые компании не особо интересовались кандидатами наук).

Хотя я думаю, что хорошо иметь докторскую степень в этой области, я не думаю, что это абсолютно необходимо . У меня есть довольно приличные знания большинства реальных алгоритмов машинного обучения, я сам реализовал большинство из них (либо в школе, либо в личных проектах) и чувствую себя довольно уверенно при решении проблем, связанных с машинным обучением / интеллектуальным анализом данных и статистикой в ​​целом. , И у меня есть друзья с похожим профилем, которые, кажется, тоже очень хорошо осведомлены об этом, но также чувствуют, что в целом компании довольно стеснительны при найме в интеллектуальный анализ данных, если вы не доктор наук.

Я хотел бы получить некоторую обратную связь, вы думаете, что докторская степень абсолютно необходима, чтобы работа была очень сосредоточена в этой области?

(Я немного поколебался, прежде чем опубликовать этот вопрос здесь, но, поскольку это кажется приемлемой темой для мета , я решил опубликовать этот вопрос, над которым я некоторое время думал.)

Charles Menguy
источник
1
На этом сайте есть несколько похожих вопросов. Вы можете посмотреть на них тоже. Ваш вопрос хорошо сформулирован, хотя, возможно, было бы немного лучше сделать его немного менее сфокусированным на ваших конкретных обстоятельствах, чтобы сделать его менее локализованным.
кардинал
1
Кроме того, что вы имеете в виду в области интеллектуального анализа данных и машинного обучения в школе? Я могу вспомнить только один или два университета в Северной Америке, например, где такая степень может существовать. Я могу вообразить многие программы MS, где вы могли бы иметь это в качестве координатора степени, но все же, вероятно, не называются таковыми.
кардинал
Спасибо за отзыв @cardinal (это мой первый пост здесь), единственные вопросы, которые я нашел, казались немного другими, так как я действительно хотел бы уточнить это нет Phd = нет машинного обучения, которое я, казалось, обнаружил в моем недавнем опыте ,
Чарльз Менгуй
1
У меня есть степень магистра в области CS, но моя специальность была в области интеллектуального анализа данных. Я не родом из США, кстати :)
Чарльз Менгуй
3
Просто подумал, что я бы бросил свои 2 цента без ответа. Я занимаюсь интеллектуальным анализом данных и машинным обучением, и в основном я самоучка в этой области (кроме моих бакалавров по темам, связанным с CS). Темы Academic ML сильно отличаются от бизнес-приложений, но хорошо иметь в них смысл.
Дан

Ответы:

56

Я считаю, что на самом деле обратное ваше заключение верно. В Disposable Academic несколько указаний о низкой надбавке к заработной плате в прикладной математике, математике и информатике для обладателей докторской степени по сравнению с обладателями степени магистра. Отчасти это объясняется тем, что компании понимают, что магистранты, как правило, обладают такой же теоретической глубиной, лучшими навыками программирования, более гибкими и могут обучаться для конкретных задач своей компании. Например, непросто заставить ученика SVM оценить инфраструктуру вашей компании, которая опирается на деревья решений. Часто, когда кто-то посвящает кучу времени определенной парадигме машинного обучения, ему трудно обобщать свою производительность в других областях.

Другая проблема заключается в том, что в наши дни большинство рабочих мест по машинному обучению сводятся к выполнению задач, а не к написанию статей или разработке новых методов. Вы можете использовать подход с высоким риском для разработки новых математических инструментов, изучения VC-мерных аспектов вашего метода, его теории сложности и т. Д. Но, в конце концов, вы можете не получить то, о чем будут беспокоиться практики.

А пока посмотри на что-то вроде послета . По сути, никакой новой математики не возникает из послетов. Это совершенно не элегантно, неуклюже и лишено какой-либо математической сложности. Но он удивительно хорошо масштабируется до больших массивов данных, и похоже, что он будет основным в распознавании поз (особенно в компьютерном зрении) в течение некоторого времени. Эти исследователи проделали огромную работу, и их работа заслуживает похвалы, но большинство людей не связывают это с докторской степенью по машинному обучению.

С таким вопросом вы получите множество разных мнений, поэтому обязательно рассмотрите их все. В настоящее время я учусь в аспирантуре по компьютерному зрению, но я решил покинуть свою программу пораньше, получив степень магистра, и я буду работать в компании по управлению активами, занимающейся машинным обучением на естественном языке, вычислительной статистикой и т. Д. Я также подумал о том, работа по извлечению данных на основе рекламы в нескольких крупных телекомпаниях и несколько вакансий в области робототехники. Во всех этих областях есть много заданий для человека с математической зрелостью и способностью решать задачи на нескольких языках программирования. Иметь степень магистра просто отлично. И, согласно этой статье в журнале «Экономист», вам будут платить в основном так же, как и кому-то, имеющему докторскую степень. И если вы работаете за пределами академии,

Как однажды сказал Питер Тиль: «Аспирантура похожа на нажатие кнопки повтора на будильнике жизни ...»

Ely
источник
6
Когда я впервые прочитал эту статью «Экономиста», когда она была опубликована, она с самого начала звучала как плохо изученная, горькая напыщенная речь. Я не удивился, когда подошел к концу и узнал, что автор был несчастным получателем докторской степени. Мое мнение об этом не сильно изменилось, так как я перечитал его несколько раз с тех пор. Обычно Экономист лучше, даже по академическим вопросам.
кардинал
9
Я думаю, что это отличная статья. Это выдвигает на первый план много проблем стимулирования с аспирантурой в эти дни. Еще одна интересная статья - «Восстание пост-доктора в качестве главного исследователя» . Я не уверен, почему вы думаете, что статья плохо исследована, можете ли вы дать более конкретную критику? Я согласен, что важно избегать предвзятости подтверждения. Но, как читатель, мне все равно, находится ли автор в режиме подтверждения, если источники хороши. Насколько мне известно, в академических кругах должно быть больше злобы.
Ely
8
У меня есть несколько основных критических замечаний к статье «Экономист», за исключением того факта, что при чтении предположительно объективного аналитического материала эмоции, исходящие из него, не должны быть первым, что я замечаю. К сожалению, они не помещаются в 600 символов, хотя они могли бы сделать хороший пост в блоге. Я думаю, что суть пьесы неверна с самого начала; человек, который стремится получить докторскую степень для получения экономической выгоды, уже неправильно понял предназначенную цель. Несмотря на это, анализ премии к зарплате имеет фатальный недостаток в том, что он не учитывает тот факт, что большой процент докторов наук все еще уходит ...
кардинал
3
... в академию. И только этот эффект затягивает любые анализы премий, особенно в таких областях, как математика.
кардинал
4
Кроме того, я абсолютно не согласен с вашим утверждением о том, что большой процент все еще поступает в академические круги, по крайней мере, в прикладную науку. Практически никто из моих коллег не остался в академических кругах после постдока. Они работают в Microsoft, Google, nVidia, Facebook, финансовых фирмах и т. Д. И т. Д. Одна из самых больших вещей, на которых опираются наши симпозиумы по развитию выпускников, - это уменьшающаяся способность получать работу и нереалистичные перспективы для академической работы.
Ely
47

Отказ от ответственности: у меня есть доктор философии и работать в машинном обучении. Сказав это, я думаю, что кроме того, чтобы стать академиком, вам не нужен доктор философии. работать в любой области. Получение докторской степени поможет вам развить определенные исследовательские навыки, но

  1. Вам не нужны эти исследовательские навыки для большинства работ.
  2. Вы можете приобрести эти навыки, не получив степень доктора философии. степень.

Мартин Вольф , главный экономический корреспондент Financial Times , не имеет докторской степени. (он имеет степень магистра), но его слово имеет гораздо больший вес, чем большинство докторов наук. выпускников. Я думаю, чтобы преуспеть в любой области (включая машинное обучение), вы должны уметь учиться и тщательно продумывать вещи самостоятельно. Доктор философии поможет вам практиковать эти навыки, но это не самоцель. Тот, кто не хочет брать у вас интервью только потому, что у вас нет доктора философии, вероятно, в любом случае не стоит работать.

user765195
источник
Очень интересно получить совет от кого-то, у кого есть докторская степень, я согласен, что докторская степень определенно дает строгость и может быть "плюсом" для большинства позиций, ориентированных на исследования, я заметил, что стартапы довольно узколобые, когда дело доходит до это, хотя крупные компании кажутся более открытыми для получения степени магистра по машинному обучению (опять же, это зависит от того, какие компании ...). В настоящее время я нашел хороший компромисс, и я рассчитываю направить свою карьеру на этот путь, прежде всего, приобретя некоторый реальный опыт на моей нынешней должности. Спасибо за ваш отличный совет.
Чарльз Менгю
2
@linker не может договориться о стартапе. У меня есть мастер в CS (хотя я написал магистерскую диссертацию по ML), и моя первая должность была стартапом. Стартапы не должны заботиться о названиях, так как они регулярно ищут широких мыслителей, которые в состоянии выполнить работу (и хорошо играть с другими в компании), в то время как я подозреваю, что более крупные компании следуют политике, высеченной в камне, чтобы избежать слишком большой ответственности за одиночные дроны HR (без горечи, просто юмор здесь;))
steffen
1
Мне нравится, когда доктора наук не рекомендуют докторов наук, или когда выпускники Айви рекомендуют не ходить к Айви. Это как Питер Тиль, предлагающий не ходить в колледж. Парень получил JD из Стэнфорда :)
Аксакал
1
Это действительно зависит от того, что вы собираетесь делать с доктором наук. Если ваша цель - научное сообщество, это необходимо, но в промышленности это действительно не большой плюс, если только ваша цель - не проводить исследования. Достаточно взглянуть на успешные технологические компании и их исполнительные команды (включая CTO и SVP Eng, если есть). Сколько STEM Phds вы найдете там? Они существуют, но редко, и часто они являются одним из основателей. Наличие доктора философии может открыть некоторые двери, но для реального достижения чего-то более важен опыт реального мира и глубокое знание основ (включая математику)
user765195
19

Отказ от ответственности: у меня нет докторской степени по CS, и я не работаю в области машинного обучения; Я обобщаю из других знаний и опыта.

Я думаю, что здесь есть несколько хороших ответов, но, по моему честному мнению, они еще не совсем раскрывают основную проблему. Я попытаюсь это сделать, но осознаю, что не думаю, что говорю что-то радикально другое. Основная проблема здесь связана с развитием навыков против передачи сигналов .

Что касается развития навыков , в конечном итоге вы хотите (как работник) иметь возможность выполнять работу, делать ее хорошо и быстро, а работодатель хочет (или, вероятно, должен) такого человека. Таким образом, вопрос здесь в том, сколько дополнительных навыков вы получаете за пару дополнительных лет академической подготовки? Конечно, вы должны что-то приобретать, но признайте, что люди, которые не продолжают учебу в аспирантуре, вероятно, не просто сидят без дела, пока не закончили бы. Таким образом, вы сравниваете один набор опыта (академический) с другим (работа). Отчасти зависит качество и характер кандидатской диссертации. Программа, ваши внутренние интересы, насколько вы самонаправлены, и какие возможности и поддержка будут доступны на вашей первой работе.

Помимо влияния продолжения академической подготовки на развитие навыков, возникает вопрос о влиянии и значении сигнала (т. Е. О том, что после вашего имени добавляется «докторская степень»). Сигнал может помочь двумя способами: во-первых, он может помочь вам получить первоначальную работу, и его не следует сбрасывать со счетов - это может быть очень важно. Исследования показали, что люди, которые вынуждены начинать с первой позиции, которая им не подходит, никогда не склонны делать то же самое (в среднем по карьере), как люди, которые начинают работать на хорошей работе. соответствовать их способностям и интересам. С другой стороны, все согласны с тем, что после вашей первой работы ваши будущие перспективы гораздо сильнее зависят от вашей успеваемости на предыдущей работе, чем от ваших академических полномочий.

Второй аспект сигнала связан с отношениями между аналитиком и потребителем анализа. @EMS делает хорошую работу, чтобы подчеркнуть это в комментарии, Есть много небольших консалтинговых магазинов, и они любят иметь докторскую степень, чтобы хвастаться потенциальным клиентам: на начальных встречах, пытающихся заключить контракт, на фирменном бланке, на презентациях готовой рабочей продукции и т. Д. Кандидаты в доктора всегда рядом. Легко быть циничным по этому поводу, но я думаю, что есть законная ценность для консалтинговой фирмы и потребителя (которые могут не знать много об этих вопросах и могут использовать учетные данные, чтобы помочь им выбрать фирму, которая будет делать хорошую работу для них) , За кулисами, некоторые работы могут быть переданы компетентным людям с меньшими полномочиями, но они хотят доктора философии. для внешнего интерфейса и подписать рабочий продукт до его доставки. Я мог видеть что-то аналогичное, что происходит со стартапами, если они пытаются привлечь капитал и хотят успокоить инвесторов.

Гунг
источник
5
(+1) Я думаю, что этот ответ начинает приближаться к сути вопроса. На самом деле есть два вопроса от ОП, представленные как один (по крайней мере, на мой взгляд). Первый: ( 1 ) Может ли человек без докторской степени выполнять значимую работу в отрасли в области интеллектуального анализа данных и / или машинного обучения? Ответ, несомненно, утвердительный. Второе: ( 2 ) Можно ли получить такую ​​должность с ограниченным опытом работы в этой области и без степени доктора наук (и насколько сложно это сделать)? Хотя второе, вероятно, легче измерить количественно, оно, похоже, имеет более серую зону.
кардинал
3
Кроме того, Робин Хэнсон недавно написал несколько хороших материалов по этому аспекту передачи сигналов и полномочий , по крайней мере, в отношении консультаций.
Ely
14

Я согласен с большинством из того, что было сказано здесь, но я хочу представить несколько практических вопросов, которые возникают при подаче заявления на работу в сфере финансов. Часто вы увидите рекламу, в которой говорится, что кандидат в области статистики или математики должен подать заявку на конкретную торговую или количественную позицию разработчика. Я знаю, что для этого есть определенные причины. Имейте в виду, я не говорю, что это правильно, но это то, что происходит на практике:

  • Есть много претендентов на работу, особенно для самых известных компаний, и работодатель не может уделить достаточно времени каждому кандидату. Фильтрация приложений на основе академического опыта сокращает численность населения до более управляемой. Да, будут промахи. Да, это не лучший способ найти продуктивных людей. Но в среднем вы смотрите на квалифицированных специалистов, которые посвятили годы, чтобы научиться ремеслу. Они должны, по крайней мере, иметь дисциплину, чтобы обогнать сложный исследовательский проект.

  • Команда и компания будут обогащены рядом докторов наук для демонстрации инвесторам и клиентам. Это даст компании представление о «оракулах» и повысит ее репутацию. Нематериальная оценка компании может расти. Среднестатистический инвестор будет более уверен в предоставлении своего капитала такой знающей команде ученых. Вы можете сделать аналогичное замечание о MBA.

  • Наконец, иногда корпоративная политика диктует, что более высокие академические достижения должны иметь преференциальный карьерный путь и компенсацию. Я считаю, что это верно для большинства корпораций в разных отраслях, а не только в сфере финансов. Трудно увидеть Джона с дипломом бакалавра в области компьютерных наук, который управляет докторами наук по математике.

Роберт Кубрик
источник
14

Отказ от ответственности: я рекрутер и работаю с 1982 года, поэтому я очень хорошо понимаю ваш вопрос. Позвольте мне сломать это так. Ваше резюме является устройством отсеивания. Компании получают тонны резюме, поэтому они читают резюме с одним вопросом: «Почему я не хочу говорить с этим человеком?» Это сокращает их кучу до нескольких кандидатов, которые имеют лучшие шансы для удовлетворения своих потребностей. Так что, если вы получаете интервью, а ваше резюме не показывает докторскую степень, то здесь происходит что-то еще. Я говорю это потому, что, так как резюме - это устройство для проверки OUT, интервью - это устройство для проверки IN. Как только они пригласили вас на собеседование, они уже пришли к выводу, что у вас достаточно «на бумаге», чтобы выполнить работу. Поэтому, когда вы идете на собеседование, единственный вопрос, который они на самом деле спрашивает: "Почему я должен нанять тебя?" Человек, которого они нанимают, будет тем, кто решит, что он может наилучшим образом удовлетворить потребности компании.

Мой совет в качестве рекрутера - задавать вопросы на протяжении всего интервью, чтобы определить их более глубокие потребности. Поверьте, описание работы редко напоминает правду, так что вы захотите проверить их горячие кнопки, а затем продать их напрямую. Не позволяйте интервью чувствовать себя как допрос, ожидая конца, чтобы задать вопросы. Вы загорелись и в итоге вам скажут: «У вас нет доктора философии». Будьте уважительны, покажите свою готовность помочь им решить их проблему.

Мой любимый вопрос: «Каковы черты лучшего человека, которого вы когда-либо знали в этой роли?» У каждого есть команда мечты, поэтому важно выяснить, какие черты они считают необходимыми для успеха в этой роли. Имейте в виду, это не вопрос опыта, опыта или степени. Видите ли, я всегда могу найти посредственного доктора наук с огромным опытом, так что это не Святой Грааль. Это то, что компании по-прежнему считают лучшим, потому что ИМО не знают, как еще написать описание работы, которое отражает суть человека, который им нужен.

Гейл Палубяк
источник
4
Добро пожаловать на сайт @GailPalubiak. Пожалуйста, не подписывайте свои сообщения с вашей личной информацией. Обратите внимание, что ваш аватар и ссылка на вашу страницу пользователя автоматически добавляются ко всем вашим сообщениям. Вы можете разместить эту информацию там. Поскольку вы новичок здесь, вы можете прочитать наш FAQ , в котором обсуждаются подобные темы.
gung - Восстановить Монику
14

Мои 2 цента: нет, я так не думаю. Кандидат наук сам по себе не дает права быть лучшим для интеллектуального анализа данных или ML. Возьми Джереми Ховарда. Я бы даже сказал, что доктор философии мало что говорит о какой-либо квалификации, так как качество программ сильно различается. Возможно, единственное, что доктор философии доказывает, это то, что его обладатель имеет высокую терпимость к разочарованию.

Итог: если вам интересна эта область, знающая, творческая и трудолюбивая, зачем вам докторская степень? Это вы должны учитывать, а не ваши титулы.

Момо
источник
2
Я полностью согласен, но у меня сложилось впечатление, что компании / рекрутеры, кажется, думают наоборот. Даже на моей предыдущей работе, когда я обсуждал некоторые вопросы добычи данных по некоторым проблемам, мне сказали, что я инженер, а не специалист по данным, и поэтому лучше, если я останусь в своей сфере деятельности.
Чарльз Менг
3
Хорошо сказано. Смотрите мой ответ для некоторых вспомогательных деталей. Кандидат наук в этой области не слишком актуален, и если компания так считает, вы, вероятно, не хотите работать в этой компании. Питер Тиль однажды сказал: «Высшая школа как нажатие на кнопку повтора на будильнике жизни ...»
Ely
6

Требует ли работа доктора философии или нет, зависит от уровня ответственности и восприятия работодателя и / или его клиентов. Я не думаю, что есть дисциплина, которая требует докторскую степень. Конечно, можно изучить данные, и работник может выполнять продуктивную работу без докторской степени. Это зависит больше от человека, его способности быстро учиться и адаптироваться, а также от способности понимать литературу, чем от предыдущего образования. Это особенно верно для интеллектуального анализа данных, который является развивающейся областью. Так что даже соискателям данных, имеющим степень доктора наук, со временем придется больше учиться.

Майкл Черник
источник
4
(+1) Одной из дисциплин, требующих докторской степени, является профессор университета. (Конечно, есть исключения, но их немного.)
whuber
2
Это также такая статистически маловероятная карьера, что большинство аспирантов должны обесценивать ее или, по крайней мере, недооценивать ее по отношению к безудержному убеждению аспирантов, что они станут штатными профессорами. За последние 15 лет в США ситуация с преподаванием в университете Research 1 (если вы не являетесь адъюнктом или пост-доктором) сильно изменилась.
августа
4

Я получил степень магистра в области прикладной статистики и работал в Европе в качестве майнера данных. Когда я приехал в Великобританию, никто даже не слышал о добыче данных, не говоря уже о том, чтобы учиться на такой степени. Сейчас это обычное дело, и работодатели считают, что докторская диссертация необходима для этой работы. Тем не менее, для этой работы важны статистические знания и аспект моделирования. По моему опыту, большинство ИТ-специалистов не понимают статистику и поэтому не могут хорошо выполнять свою работу. Я начал преподавать и сейчас регистрируюсь, чтобы получить докторскую степень в области прикладной статистики, чтобы удовлетворить этих работодателей. Я, наверное, знаю больше, чем большинство аспирантов, которые учились на степень магистра в 1980-х годах, когда уровень был очень высоким. Я думаю, чтобы быть хорошим майнером данных, нужно иметь опыт в статистике.

SEH
источник
4

Это полностью зависит от работы под рукой. По моему опыту (у меня есть докторская степень), есть 3 типа рабочих мест. Во-первых, как уже было сказано, большинство отраслевых заданий в наши дни ориентированы на прикладное машинное обучение, то есть применяют подстройку существующих алгоритмов ML к рассматриваемой предметной проблеме. Это, безусловно, самая распространенная работа по ОД, и степень магистра более чем достаточна для такого рода работ. Меньшее количество рабочих мест, которые оказываются в исследовательском крыле компаний или университетов, в учреждениях применяются - твик - создают рабочие места по ОД для решения конкретной предметной задачи. Опыт создания нового метода путем изучения существующих методов с использованием новой математики обычно занимает некоторое время, и этот опыт, как правило, приобретается во время PhD, как новый теоретический результат должен быть достаточно надежным, чтобы получить признание своих коллег (публикация). Последний и, вероятно, самый сложный, самый рискованный и самый необычный тип работ - это чисто теоретические вещи, которые происходят в исследовательских университетах, где цель состоит в том, чтобы полностью разработать новый алгоритм или лучше понять математические свойства существующих алгоритмов (также необходимо быть достаточно хорошим, чтобы быть опубликованным). Это тоже опыт, обычно приобретаемый в качестве кандидата наук. В то время как аспирант, возможно, имел некоторое знакомство со всеми тремя типами рабочих мест во время его / ее обучения (чисто из-за продолжительности программы и того факта, что не существует срочных сроков выпуска продукции, таких как настоящая работа), студент MS как правило, хорошо подготовлен к первой работе и, вероятно, имел бы только незначительные воздействия на 2-й и 3-й типы рабочих мест.

stormchaser
источник
Когда вы говорите «работа», вы подразумеваете «постоянную работу» или «задание или часть работы»? Вы, кажется, переключаетесь между этими двумя значениями, и это делает ваш ответ немного запутанным.
говорит амеба: восстанови Монику
Есть ли разница между ними? Искренне спрашиваю ....
Штурмовик
2

Я не думаю, что Phd требуется для любых позиций машинного обучения. Хорошие мастера и любознательный ум с математическим любопытством - все, что ему нужно. Аспирант смещает ваш подход к вашей специализации, что нежелательно. Я работаю над основными алгоритмами машинного обучения и кодирую большинство из них так, как я хочу. И я видел много докторов с неправильным мышлением. Phds в основном мотивированы чисто теоретическими проблемами, в отличие от промышленности, где основное внимание уделяется быстрым решениям

user44549
источник
2

Люди, которые смотрят свысока на обучение в PhD, либо вообще не знают, что такое PhD, либо просто намеренно делают неверные комментарии; Обучение большинства магистров никак не может сравниться с обучением в докторантуре. интенсивность и строгость в обучении докторантуре требуют невообразимой самоотдачи, самодисциплины, способности к обучению под большим давлением и солидного набора навыков ..., степень доктора философии уже доказала все это, обычная степень магистра в Америке не одинакова уровень на всех ....

Майк
источник
6
Я не думаю, что кто-то здесь "смотрит на обучение докторантуре". У большинства из нас есть доктора наук. Многие из нас работают в академической среде, где докторская степень является обязательной. Некоторые ответы здесь (мои собственные, например) просто признают, что могут быть люди без полномочий, у которых есть навыки, и что эти люди также могут получить работу. У меня есть бывший студент бакалавриата (не магистр), который работает специалистом по данным в консалтинговой фирме.
gung - Восстановить Монику