Производительность подкачки с настраиваемой сортировкой по многим миллионам строк

18

В нашем приложении есть сетка, в которой пользователи могут просматривать большое количество записей (10-20 миллионов). Сетка поддерживает сортировку по возрастанию и убыванию по ряду столбцов (20+). Многие из этих значений также не являются уникальными, поэтому приложение также сортирует их по идентификатору как прерывателю связей, чтобы убедиться, что строки всегда отображаются на одной странице. Например, если пользователь хочет отсортировать по размеру виджета (начиная с самого большого), приложение генерирует запрос, который выглядит примерно так:

SELECT TOP 30
    * -- (Pretend that there is a list of columns here)
FROM Test
--  WHERE widgetSize > 100
ORDER BY
    widgetSize DESC,
    id ASC

Выполнение этого запроса занимает ~ 15 с (с кэшированными данными), основная часть затрат, по-видимому, заключается в сортировке ~ 1,3 млн строк по widgetSize. Пытаясь настроить этот запрос, я обнаружил, что, если я добавлю WHEREпредложение, ограниченное только самыми большими widgetSizes (закомментировано в приведенном выше запросе), запрос займет всего ~ 800 мс (все из первых 50 000 результатов имеют размер виджета> 100) ,

Почему запрос без WHEREпредложения намного медленнее? Я проверил статистику по столбцу widgetSize, и они показывают, что верхние 739 строк имеют WidgetSize> 506. Поскольку требуется только 30 строк, может ли сервер SQL не использовать эту информацию для вывода о том, что ему нужно только сортировать строки с размером виджета какой большой?

Снимок экрана: план выполнения запроса для быстрой и медленной версий запроса

Я знаю, что могу ускорить выполнение этого конкретного запроса, добавив индекс widgetSizeиid , однако этот индекс полезен только в этом конкретном сценарии и становится бесполезным, если (например) пользователь меняет направление сортировки. Эта таблица содержит много дополнительных столбцов, и каждый индекс имеет большой размер (~ 200 МБ), поэтому я не могу позволить себе добавить индекс для каждого возможного порядка сортировки.

Есть ли какой-нибудь способ заставить запрос выполнять эти запросы без добавления индекса для каждого возможного порядка сортировки? (пользователь может сортировать по любому из 20+ столбцов)


Следующий скрипт создает приведенную выше таблицу и заполняет ее некоторыми репрезентативными данными. Таблица намного уже, чем фактическая таблица, однако все еще демонстрирует производительность, которую я вижу. На моем ПК запрос с предложением where занимает ~ 200 мс, в то время как запрос без запроса where занимает ~ 800 мс.

Предупреждение: результирующая база данных после запуска этого сценария имеет размер ~ 2 ГБ.

CREATE TABLE Test
(
    id INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
    widgetSize INT NOT NULL
)

CREATE TABLE #Data
(
    widgetSize INT NOT NULL,
    recordCount INT NOT NULL
)

INSERT INTO #Data (widgetSize, recordCount)
VALUES
    (40826,1),
    (30317,1),
    (28513,1),
    (24255,1),
    (20247,1),
    (20245,1),
    (16445,1),
    (15719,1),
    (8489,1),
    (8486,1),
    (4753,1),
    (4424,1),
    (4409,1),
    (3738,1),
    (3732,1),
    (3725,4),
    (3691,1),
    (3678,1),
    (3655,1),
    (3653,3),
    (3575,1),
    (3572,1),
    (3569,1),
    (2919,1),
    (2903,1),
    (2804,1),
    (2795,1),
    (2765,1),
    (2732,1),
    (2731,1),
    (2677,1),
    (2631,1),
    (2624,1),
    (2548,1),
    (2544,1),
    (2531,2),
    (2516,3),
    (2512,1),
    (2503,1),
    (2502,1),
    (2472,1),
    (2467,2),
    (2460,1),
    (2452,1),
    (2442,2),
    (2439,1),
    (2412,1),
    (2411,1),
    (2405,1),
    (2382,1),
    (2375,1),
    (2348,1),
    (2341,1),
    (2322,1),
    (2321,1),
    (2316,1),
    (2314,1),
    (2291,1),
    (2284,1),
    (2258,1),
    (2251,1),
    (2232,1),
    (2229,7),
    (2222,1),
    (2204,1),
    (2186,1),
    (2173,1),
    (2145,2),
    (2143,1),
    (2113,2),
    (2110,1),
    (2089,1),
    (2082,1),
    (2080,1),
    (2056,1),
    (2054,1),
    (2052,1),
    (2019,1),
    (1991,2),
    (1900,1),
    (1870,1),
    (1869,1),
    (1856,1),
    (1826,1),
    (1802,1),
    (1792,1),
    (1786,1),
    (1784,1),
    (1781,1),
    (1780,1),
    (1771,1),
    (1758,1),
    (1756,1),
    (1749,2),
    (1742,1),
    (1740,2),
    (1729,1),
    (1728,1),
    (1726,1),
    (1718,1),
    (1717,1),
    (1707,1),
    (1701,2),
    (1696,1),
    (1694,1),
    (1688,1),
    (1679,1),
    (1649,2),
    (1632,1),
    (1621,1),
    (1616,1),
    (1588,2),
    (1584,1),
    (1554,2),
    (1539,1),
    (1525,1),
    (1516,1),
    (1515,1),
    (1476,1),
    (1467,1),
    (1463,2),
    (1406,1),
    (1390,1),
    (1370,1),
    (1350,1),
    (1338,1),
    (1335,2),
    (1326,1),
    (1325,1),
    (1316,2),
    (1315,1),
    (1311,3),
    (1308,1),
    (1305,1),
    (1302,1),
    (1299,1),
    (1298,1),
    (1285,1),
    (1283,1),
    (1282,1),
    (1270,1),
    (1261,1),
    (1255,1),
    (1251,1),
    (1250,1),
    (1242,1),
    (1220,1),
    (1219,1),
    (1217,1),
    (1216,1),
    (1193,1),
    (1190,1),
    (1164,2),
    (1147,1),
    (1137,3),
    (1134,2),
    (1133,1),
    (1128,2),
    (1120,1),
    (1113,1),
    (1105,1),
    (1099,6),
    (1098,1),
    (1096,2),
    (1095,2),
    (1092,3),
    (1082,1),
    (1061,2),
    (1050,1),
    (1040,1),
    (1007,1),
    (987,1),
    (966,1),
    (960,1),
    (954,1),
    (952,1),
    (951,1),
    (950,1),
    (924,1),
    (923,2),
    (917,1),
    (916,2),
    (907,2),
    (902,1),
    (900,1),
    (896,1),
    (892,1),
    (889,1),
    (879,2),
    (876,1),
    (874,3),
    (868,2),
    (861,8),
    (860,2),
    (854,4),
    (853,1),
    (852,1),
    (851,6),
    (847,1),
    (846,1),
    (843,13),
    (839,3),
    (838,1),
    (837,3),
    (825,3),
    (824,1),
    (820,1),
    (819,1),
    (818,5),
    (817,9),
    (814,2),
    (811,13),
    (809,1),
    (807,1),
    (804,4),
    (798,4),
    (795,1),
    (794,7),
    (791,2),
    (789,2),
    (788,2),
    (782,7),
    (778,1),
    (770,1),
    (769,3),
    (768,1),
    (763,2),
    (760,1),
    (756,6),
    (755,5),
    (753,5),
    (751,1),
    (748,1),
    (747,3),
    (746,2),
    (745,1),
    (744,2),
    (743,3),
    (742,2),
    (741,3),
    (737,3),
    (735,1),
    (734,1),
    (733,2),
    (731,2),
    (730,1),
    (728,1),
    (727,2),
    (726,1),
    (724,1),
    (721,1),
    (718,2),
    (714,3),
    (710,1),
    (707,8),
    (706,2),
    (703,1),
    (697,3),
    (696,2),
    (692,2),
    (686,1),
    (684,1),
    (683,1),
    (680,2),
    (678,2),
    (674,2),
    (672,2),
    (671,1),
    (669,1),
    (668,2),
    (667,2),
    (666,1),
    (665,1),
    (663,3),
    (662,1),
    (661,2),
    (658,1),
    (657,2),
    (656,1),
    (655,1),
    (654,2),
    (652,2),
    (651,1),
    (650,3),
    (649,4),
    (644,3),
    (643,1),
    (642,1),
    (641,1),
    (637,2),
    (636,1),
    (632,1),
    (631,1),
    (630,1),
    (629,3),
    (627,1),
    (625,2),
    (624,2),
    (623,1),
    (620,1),
    (618,5),
    (617,3),
    (616,1),
    (615,2),
    (614,2),
    (612,7),
    (605,2),
    (603,5),
    (601,3),
    (595,1),
    (594,1),
    (593,1),
    (590,1),
    (588,6),
    (587,3),
    (586,3),
    (583,1),
    (582,1),
    (580,3),
    (578,1),
    (577,2),
    (576,1),
    (575,2),
    (574,2),
    (573,1),
    (572,2),
    (571,3),
    (570,1),
    (569,1),
    (568,2),
    (567,4),
    (566,4),
    (565,2),
    (564,2),
    (563,2),
    (562,1),
    (560,1),
    (559,2),
    (558,1),
    (557,3),
    (556,3),
    (555,2),
    (554,3),
    (553,1),
    (552,4),
    (551,4),
    (550,1),
    (549,3),
    (548,2),
    (547,2),
    (546,8),
    (544,1),
    (543,3),
    (542,8),
    (541,1),
    (538,8),
    (536,1),
    (534,1),
    (533,2),
    (532,1),
    (531,1),
    (530,1),
    (529,11),
    (528,1),
    (527,3),
    (526,1),
    (525,2),
    (524,5),
    (523,3),
    (522,1),
    (521,2),
    (520,5),
    (518,12),
    (517,5),
    (515,5),
    (514,3),
    (513,1),
    (511,16),
    (510,6),
    (509,1),
    (508,2),
    (507,1),
    (506,41),
    (505,2),
    (504,7),
    (503,7),
    (502,3),
    (501,3),
    (500,8),
    (499,1),
    (498,4),
    (497,6),
    (496,10),
    (495,8),
    (494,4),
    (493,5),
    (492,3),
    (491,3),
    (490,6),
    (489,6),
    (488,2),
    (487,3),
    (486,4),
    (485,6),
    (484,2),
    (483,5),
    (482,12),
    (481,3),
    (480,9),
    (479,10),
    (478,6),
    (477,5),
    (476,19),
    (475,5),
    (474,4),
    (473,3),
    (472,3),
    (471,8),
    (470,5),
    (469,11),
    (468,2),
    (467,1),
    (466,5),
    (465,9),
    (464,13),
    (463,10),
    (462,5),
    (461,12),
    (460,1),
    (459,5),
    (458,3),
    (457,1),
    (456,13),
    (455,3),
    (454,11),
    (453,5),
    (452,6),
    (451,20),
    (450,51),
    (449,12),
    (448,8),
    (447,6),
    (446,6),
    (445,6),
    (444,16),
    (443,80),
    (442,5),
    (441,10),
    (440,5),
    (439,12),
    (438,14),
    (437,58),
    (436,2),
    (435,13),
    (434,7),
    (433,5),
    (432,16),
    (431,7),
    (430,30),
    (429,21),
    (428,6),
    (427,18),
    (426,2),
    (425,7),
    (424,21),
    (423,11),
    (422,4),
    (421,8),
    (420,8),
    (419,7),
    (418,15),
    (417,9),
    (416,22),
    (415,6),
    (414,22),
    (413,10),
    (412,15),
    (411,9),
    (410,68),
    (409,62),
    (408,5),
    (407,7),
    (406,12),
    (405,12),
    (404,8),
    (403,8),
    (402,31),
    (401,24),
    (400,11),
    (399,3),
    (398,16),
    (397,19),
    (396,6),
    (395,18),
    (394,3),
    (393,2),
    (392,18),
    (391,20),
    (390,14),
    (389,12),
    (388,26),
    (387,14),
    (386,27),
    (385,23),
    (384,25),
    (383,25),
    (382,21),
    (381,69),
    (380,14),
    (379,34),
    (378,41),
    (377,24),
    (376,27),
    (375,13),
    (374,35),
    (373,32),
    (372,43),
    (371,28),
    (370,30),
    (369,27),
    (368,21),
    (367,23),
    (366,36),
    (365,45),
    (364,42),
    (363,82),
    (362,16),
    (361,33),
    (360,29),
    (359,15),
    (358,19),
    (357,17),
    (356,29),
    (355,11),
    (354,18),
    (353,29),
    (352,5),
    (351,6),
    (350,9),
    (349,17),
    (348,11),
    (347,17),
    (346,16),
    (345,20),
    (344,15),
    (343,14),
    (342,19),
    (341,7),
    (340,13),
    (339,13),
    (338,23),
    (337,13),
    (336,15),
    (335,9),
    (334,6),
    (333,10),
    (332,30),
    (331,22),
    (330,21),
    (329,13),
    (328,8),
    (327,10),
    (326,50),
    (325,16),
    (324,18),
    (323,17),
    (322,26),
    (321,18),
    (320,24),
    (319,18),
    (318,20),
    (317,6),
    (316,19),
    (315,17),
    (314,14),
    (313,39),
    (312,29),
    (311,23),
    (310,21),
    (309,27),
    (308,27),
    (307,14),
    (306,19),
    (305,27),
    (304,42),
    (303,29),
    (302,38),
    (301,47),
    (300,19),
    (299,9),
    (298,14),
    (297,46),
    (296,11),
    (295,20),
    (294,20),
    (293,16),
    (292,23),
    (291,27),
    (290,35),
    (289,20),
    (288,15),
    (287,21),
    (286,22),
    (285,33),
    (284,24),
    (283,11),
    (282,25),
    (281,17),
    (280,47),
    (279,22),
    (278,15),
    (277,26),
    (276,18),
    (275,20),
    (274,29),
    (273,53),
    (272,28),
    (271,17),
    (270,20),
    (269,30),
    (268,15),
    (267,40),
    (266,143),
    (265,35),
    (264,11),
    (263,30),
    (262,32),
    (261,39),
    (260,52),
    (259,96),
    (258,31),
    (257,18),
    (256,35),
    (255,52),
    (254,24),
    (253,35),
    (252,64),
    (251,34),
    (250,21),
    (249,45),
    (248,52),
    (247,64),
    (246,131),
    (245,108),
    (244,36),
    (243,34),
    (242,45),
    (241,50),
    (240,38),
    (239,57),
    (238,55),
    (237,62),
    (236,31),
    (235,82),
    (234,43),
    (233,40),
    (232,43),
    (231,58),
    (230,38),
    (229,38),
    (228,38),
    (227,69),
    (226,23),
    (225,54),
    (224,90),
    (223,91),
    (222,60),
    (221,277),
    (220,70),
    (219,33),
    (218,42),
    (217,100),
    (216,185),
    (215,98),
    (214,108),
    (213,57),
    (212,54),
    (211,77),
    (210,150),
    (209,175),
    (208,46),
    (207,199),
    (206,158),
    (205,68),
    (204,85),
    (203,129),
    (202,75),
    (201,59),
    (200,73),
    (199,123),
    (198,72),
    (197,155),
    (196,193),
    (195,66),
    (194,119),
    (193,119),
    (192,80),
    (191,80),
    (190,96),
    (189,284),
    (188,108),
    (187,79),
    (186,118),
    (185,93),
    (184,92),
    (183,194),
    (182,152),
    (181,96),
    (180,134),
    (179,108),
    (178,121),
    (177,91),
    (176,140),
    (175,262),
    (174,159),
    (173,121),
    (172,134),
    (171,118),
    (170,116),
    (169,168),
    (168,297),
    (167,171),
    (166,214),
    (165,474),
    (164,176),
    (163,131),
    (162,215),
    (161,310),
    (160,175),
    (159,183),
    (158,208),
    (157,377),
    (156,248),
    (155,804),
    (154,452),
    (153,133),
    (152,224),
    (151,826),
    (150,299),
    (149,367),
    (148,427),
    (147,413),
    (146,1190),
    (145,796),
    (144,450),
    (143,334),
    (142,308),
    (141,707),
    (140,580),
    (139,601),
    (138,403),
    (137,351),
    (136,411),
    (135,547),
    (134,528),
    (133,506),
    (132,306),
    (131,485),
    (130,419),
    (129,832),
    (128,1034),
    (127,894),
    (126,1168),
    (125,313),
    (124,787),
    (123,1079),
    (122,984),
    (121,1086),
    (120,1525),
    (119,1007),
    (118,539),
    (117,1596),
    (116,1307),
    (115,2081),
    (114,1256),
    (113,2200),
    (112,1184),
    (111,535),
    (110,1404),
    (109,1219),
    (108,1675),
    (107,1765),
    (106,1784),
    (105,890),
    (104,931),
    (103,1769),
    (102,1720),
    (101,1528),
    (100,1639),
    (99,1955),
    (98,1434),
    (97,979),
    (96,2295),
    (95,2516),
    (94,3043),
    (93,2972),
    (92,3493),
    (91,1873),
    (90,1047),
    (89,2228),
    (88,2328),
    (87,1804),
    (86,5243),
    (85,2256),
    (84,1602),
    (83,898),
    (82,2025),
    (81,2207),
    (80,2559),
    (79,2720),
    (78,3302),
    (77,5410),
    (76,994),
    (75,2767),
    (74,3343),
    (73,3951),
    (72,4116),
    (71,6164),
    (70,2992),
    (69,2066),
    (68,18269),
    (67,13159),
    (66,13142),
    (65,7387),
    (64,8759),
    (63,4887),
    (62,1847),
    (61,10239),
    (60,6990),
    (59,8785),
    (58,8161),
    (57,10081),
    (56,4899),
    (55,1744),
    (54,9916),
    (53,8713),
    (52,9529),
    (51,8827),
    (50,10255),
    (49,6392),
    (48,2253),
    (47,9939),
    (46,12083),
    (45,12103),
    (44,12667),
    (43,19758),
    (42,9699),
    (41,5450),
    (40,26566),
    (39,41836),
    (38,48441),
    (37,49562),
    (36,71987),
    (35,32390),
    (34,7159),
    (33,179598),
    (32,158675),
    (31,132676),
    (30,151839),
    (29,139014),
    (28,632065),
    (27,7800),
    (26,259440),
    (25,215240),
    (24,170986),
    (23,157141),
    (22,167304),
    (21,20408),
    (20,11949),
    (19,267541),
    (18,208096),
    (17,174708),
    (16,156445),
    (15,153569),
    (14,73937),
    (13,73821),
    (12,310246),
    (11,231829),
    (10,179047),
    (9,145506),
    (8,133433),
    (7,108736),
    (6,73381),
    (5,84825),
    (4,86641),
    (3,86172),
    (2,87690),
    (1,148110),
    (0,7960761),
    (-1,861),
    (-2,365),
    (-3,356),
    (-4,578),
    (-5,293),
    (-6,310),
    (-7,414),
    (-8,748),
    (-9,113),
    (-10,782),
    (-11,705),
    (-12,711),
    (-13,915),
    (-14,539),
    (-15,70),
    (-16,21),
    (-17,40),
    (-18,56),
    (-19,52),
    (-20,34),
    (-21,46),
    (-22,20),
    (-23,10),
    (-24,24),
    (-25,44),
    (-26,18),
    (-27,13),
    (-28,4),
    (-29,3),
    (-30,6),
    (-31,2),
    (-58,1),
    (-59,13),
    (-60,2),
    (-61,2),
    (-64,1),
    (-70,1),
    (-97,1),
    (-145,1),
    (-234,1),
    (-239,2),
    (-240,2),
    (-272,2),
    (-273,1),
    (-274,1),
    (-276,4),
    (-1094,1),
    (-1096,1),
    (-1337,1),
    (-1341,1),
    (-3545,1),
    (-3547,1),
    (-10962,1),
    (-10964,1),
    (-255449,1),
    (-255470,1),
    (-365104,1),
    (-365105,1)

DECLARE c CURSOR FOR
SELECT widgetSize, recordCount FROM #Data
OPEN c

DECLARE @widgetSize INT
DECLARE @rowCount INT
FETCH NEXT FROM c INTO @widgetSize, @rowCount

WHILE @@FETCH_STATUS = 0  
BEGIN  
    ;WITH cte AS
    (
        SELECT rowNumber = 1
        UNION ALL
        SELECT rowNumber + 1
        FROM cte
        WHERE rowNumber < @rowCount
    )
    INSERT INTO Test
    (
        widgetSize
    )
    SELECT
        @widgetSize
    FROM   cte 
    OPTION (MAXRECURSION 0)

    FETCH NEXT FROM c INTO @widgetSize, @rowCount
END   

CLOSE c  
DEALLOCATE c

DROP TABLE #Data

CREATE STATISTICS WidgetSize
ON Test (WidgetSize) WITH FULLSCAN
Джастин
источник
Сколько других столбцов вы потенциально заказываете в дополнение к idи widgetsize?
LowlyDBA
@JohnM 30+, хотя многие из них используются нечасто, поэтому производительность для этих столбцов не столь критична
Джастин,
Почему не включен кластерный индекс (id, widgetSize)? Если порядок поиска из ASC/DESCиндекса просто читается назад - он не устаревает.
LowlyDBA
@JohnM Просто попробовал со следующим индексом, и это никак не повлияло на производительностьCREATE CLUSTERED INDEX CIX_id_widgetSize ON Test (id, widgetSize)
Джастин
В примере данных есть 13773285 rows < 100и только 65717 rows > 100, так что вы в значительной степени ограничиваете строки, запрашиваемые с помощью WHERE. Есть ли какое-то другое значение, по которому вы можете фильтровать? Если у вас есть предприятие, вы можете рассмотреть возможность разделения таблицы.
LowlyDBA

Ответы:

14

Нет волшебного решения этого типа проблемы. Чтобы избежать потенциально дорогой сортировки, должен быть индекс, который может обеспечить запрошенный заказ (и оптимизатор должен выбрать использование этого индекса). Без вспомогательного индекса лучшее, что может сделать SQL Server изначально, - это ограничить соответствующие строки (на основе WHEREпредложения) перед сортировкой результирующего набора. Без WHEREпредложения это означает сортировку всех строк в таблице.

Я проверил статистику по столбцу widgetSize, и они показывают, что у верхних 739 строк есть WidgetSize> 506

«Верхние 739» строк в этом утверждении, по-видимому, относятся к первым записям в статистической гистограмме, упорядоченным по RANGE_HI_KEY. Гистограмма построена на упорядоченном потоке (с использованием сортировки). Не хранится информация о том, где эти строки находятся в таблице. Даже если эти строки встречаются первыми при сканировании таблицы, у механизма нет другого выбора, кроме как полностью завершить сканирование, чтобы убедиться, что в нем не встречаются значения, которые сортируются выше.

Поскольку требуется только 30 строк, может ли сервер SQL не использовать эту информацию, чтобы сделать вывод, что ему нужно только отсортировать строки с большим размером виджета?

Чтобы найти 30 самых больших строк, SQL Server должен проверить каждую отдельную строку (что соответствует WHEREпредложению). SQL Server не может выбрать произвольное «минимальное значение», которое квалифицируется как «достаточно большое», и даже если бы он это сделал, он не мог найти эти строки без соответствующего индекса.

На самом деле, сортировка Top N, где N <= 100, использует стратегию замены, при которой в буфер сортировки помещаются только входящие значения, превышающие текущий минимум, но это незначительная оптимизация по сравнению со стоимостью чтения строк из таблицы. и передать их в род.

В принципе, механизм может вставить динамический фильтр (по текущему минимальному значению, присутствующему в буфере сортировки) в сканирование таблицы, чтобы ограничить строки как можно раньше, но это не реализовано. Чтобы обойти это, похожая идея включает создание индексированного представления для различных значений widgetSizeс количеством строк, соответствующих каждому значению:

CREATE VIEW dbo.WidgetSizes
WITH SCHEMABINDING
AS
SELECT
    T.widgetSize,
    NumRows = COUNT_BIG(*) 
FROM dbo.Test AS T
GROUP BY
    T.widgetSize;
GO
CREATE UNIQUE CLUSTERED INDEX CUQ_WidgetSizes_widgetSize
ON dbo.WidgetSizes (widgetSize);

Это индексированное представление будет намного меньше, чем эквивалентный некластеризованный индекс, widgetSizeесли существует относительно немного различных значений (как в случае с примерами данных). Затем эту информацию можно использовать для оценки минимума widgetSizeфильтрации, при этом гарантируя, что будет найдено не менее 30 строк.

Первая страница

Для первой страницы из 30 строк реализация выглядит так:

DECLARE 
    @TopRows bigint = 30,
    @Minimum integer;

SELECT TOP (1)
    @Minimum = Filtered.widgetSize
FROM 
(
    SELECT * FROM 
    (
        SELECT
            WS.widgetSize,
            WS.NumRows,
            -- SQL Server 2012 or later
            SumNumRows = SUM(WS.NumRows) OVER (
                ORDER BY WS.widgetSize DESC)
        FROM dbo.WidgetSizes AS WS WITH (NOEXPAND)
    ) AS RunningTotal
    WHERE 
        RunningTotal.SumNumRows >= @TopRows
) AS Filtered
ORDER BY 
    Filtered.SumNumRows ASC;

SELECT TOP (@TopRows)
    T.id,
    T.widgetSize
FROM dbo.Test AS T
WHERE T.widgetSize >= @Minimum
ORDER BY
    T.widgetSize DESC,
    T.id ASC;

Планы выполнения:

Планы выполнения

Это заметно сокращает время выполнения, при этом большая часть оставшихся затрат связана с сканированием таблиц и смещенным фильтром. Производительность может быть улучшена путем создания некластеризованного индекса хранилища столбцов (начиная с SQL Server 2012):

CREATE NONCLUSTERED COLUMNSTORE INDEX 
    NCCI_Test_id_widgetSize 
ON dbo.Test (id, widgetSize);

На моем ноутбуке выполнение сканирования и фильтрации в пакетном режиме по индексу хранилища столбцов сократило время выполнения с примерно 300 мс до всего лишь 20 мс :

План выполнения NCCI

Следущая страница

Последняя строка, возвращаемая запросом первой страницы, имеет widgetSize = 2903и id = 327:

Страница 1 Результаты

Поиск следующих 30 строк (стр. 2) требует только простых изменений предыдущего запроса:

DECLARE 
    @TopRows bigint = 30,
    @Minimum integer;

SELECT TOP (1)
    @Minimum = Filtered.widgetSize
FROM 
(
    SELECT * FROM 
    (
        SELECT
            WS.widgetSize,
            WS.NumRows,
            SumNumRows = SUM(WS.NumRows) OVER (
                ORDER BY WS.widgetSize DESC)
        FROM dbo.WidgetSizes AS WS WITH (NOEXPAND)
        WHERE
            -- Added
            WS.widgetSize < 2903
    ) AS RunningTotal
    WHERE 
        RunningTotal.SumNumRows >= @TopRows
) AS Filtered
ORDER BY 
    Filtered.SumNumRows ASC;

SELECT TOP (@TopRows)
    T.id,
    T.widgetSize
FROM dbo.Test AS T
WHERE 
    T.widgetSize >= @Minimum
    AND 
    (
        -- Added
        T.widgetSize < 2903
        OR (widgetSize = 2903 AND id > 327)
    )
ORDER BY
    T.widgetSize DESC,
    T.id ASC;

Это приводит к тем же результатам, что и очевидное расширение исходного запроса:

SELECT TOP 30
    * -- (Pretend that there is a list of columns here)
FROM Test
    WHERE widgetSize < 2903
    OR (widgetSize = 2903 AND id > 327)
ORDER BY
    widgetSize DESC,
    id ASC;

Страница 2 Результаты

Запрос с использованием индексированного представления и некластеризованного индекса хранилища столбцов выполняется за 25 мс по сравнению с более чем 2000 мс для оригинала.

Традиционное индексное решение

В качестве альтернативы, если вы создадите (минимальные, не покрывающие) некластеризованные индексы для поддержки наиболее распространенных запросов на упорядочение, вполне вероятно, что оптимизатор запросов будет использовать их для удовлетворения TOP (30)запроса. Сжатие индекса может использоваться для минимизации размера этих дополнительных индексов.

Пол Уайт восстановил Монику
источник
Это соответствует тому, что я вижу в статистике запросов - в более быстром запросе количество чтений такое же, как и при сканировании всей таблицы, просто сортировка выполняется быстрее, поскольку вместо сортировки нужно только 60 000 строк. 1.3м. Трудно создать индексы для всех возможных сортировок, так как их много (20+), каждый индекс большой (~ 200 МБ), и мне нужно по 2 каждого для покрытия возрастающего / убывающего порядка сортировки.
Джастин
6

На вашем месте я бы сделал шаг назад и поставил бы под сомнение требование. Ваш квадратный колышек будет лишь незначительно соответствовать круглому целому.

Рассмотрим фильтрацию и поиск вместо сортировки и подкачки страниц. Лучше для задней части и лучше для пользователя. Никто на самом деле не взаимодействует с 10-миллионными строками, сортируя по столбцу Foo и переходя на страницу 312. Сильный поиск - это так гораздо лучше UX метафора.

Вы можете спросить, как построить эффективный поиск и фильтрацию по произвольным критериям в базе данных (хранилище столбцов), но в большинстве случаев реализация заключается в простом поиске извне БД (Lucene, Sphinx и т. Д.).

Ремус Русану
источник