Матрица собственности X вновь (или Радость X)

11

Эта задача частично является задачей алгоритмов, частично задачей оптимизации, а частично просто самой быстрой задачей кода.

Матрица AT полностью указана в первой строке rи в первом столбце c. Каждый оставшийся элемент матрицы является просто копией элемента, который расположен по диагонали вверх и влево. То есть M[i,j] = M[i-1,j-1]. Мы допустим T матриц, которые не являются квадратными. Однако мы всегда предполагаем, что количество строк не больше, чем количество столбцов. Например, рассмотрим следующую матрицу 3 на 5 Т.

10111
11011
11101

Мы говорим, что матрица обладает свойством X, если она содержит два непустых набора столбцов с неидентичными индексами, которые имеют одинаковую (векторную) сумму. Векторная сумма одного или нескольких столбцов представляет собой просто поэлементное суммирование их столбцов. То есть сумма двух или более столбцов, содержащих xэлементы, каждый представляет собой другой столбец, содержащий xэлементы. Сумма одного столбца тривиально является самим столбцом.

Приведенная выше матрица тривиально обладает свойством X, поскольку первый и последний столбцы совпадают. Тождественная матрица никогда не обладает свойством X.

Если мы просто удалим последний столбец матрицы выше, то получим пример, который не имеет свойства X и даст оценку 4/3.

1011
1101
1110

Задание

Задача состоит в том, чтобы написать код, чтобы найти T-матрицу с наивысшей оценкой с двоичными записями и не имеет свойства X. Для ясности, матрица с двоичными записями обладает тем свойством, что каждая из ее записей равна 0 или 1.

Гол

Ваша оценка будет равна количеству столбцов, разделенному на количество строк в вашей наилучшей оценочной матрице.

Tie Breaker

Если два ответа имеют одинаковую оценку, победит тот, который отправил первый.

В (очень) маловероятном случае, когда кто-то найдет способ получить неограниченное количество баллов, будет принято первое действительное доказательство такого решения. В еще более маловероятном случае, когда вы сможете найти доказательство оптимальности конечной матрицы, я, конечно, также призову победу.

намек

Все ответы в Найти матрицу наивысшей оценки без свойства X действительны здесь, но они не являются оптимальными. Существуют T матриц без свойства X, которые не являются циклическими.

Например, существует матрица 7 на 12 T без свойства X, но такой циклической матрицы нет.

21/11 побьет все текущие ответы от этого и предыдущего вызова.

Языки и библиотеки

Вы можете использовать любой язык со свободно доступным компилятором / интерпретатором и т. Д. для Linux и любых библиотек, которые также свободно доступны для Linux.

Бонус Первый ответ, набравший больше 2 баллов, сразу же получает награду в 200 баллов . Тон Хоспель достиг этого!


Текущий список лидеров

  • С ++ . Счет 31/15 от Ton Hospel
  • Java . Счет 36/19 от Питера Тейлора
  • Haskell . Счет 14/8 Александра-Бретта
Сообщество
источник
Под «двумя непустыми наборами столбцов с неидентичными индексами» вы подразумеваете два набора непересекающихся столбцов? Или, перефразируя это, {1, 3}, {1, 5} - допустимые два подмножества столбцов?
pawel.boczarski
@ pawel.boczarski Нет, не пересекаются. Просто не идентичны. Итак, {1, 3}, {1, 5} действительны.
Хорошо. Как насчет M [i, 1] - это «заимствование» из последнего столбца M [i-1] (ноль не является допустимым индексом столбца матрицы)? И на самом деле это «вверх и влево», а не «вверх и вправо».
pawel.boczarski
@ pawel.boczarski "право" было опечаткой. Спасибо. Первая строка и столбец могут быть установлены на что угодно. Они определяют всю остальную часть матрицы. Это отвечает на ваш вопрос?
Ладно, я понял. Я был виноват в том, что не прочитал внимательно, что первый столбец также определен.
pawel.boczarski

Ответы:

6

C ++, счет 23/12 25/13 27/14 28/14 31/15

Наконец, результат с соотношением> 2:

rows=15,cols=31
1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 
1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 
1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 
1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 
0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 
1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 
0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 
0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 
1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 
0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 
0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 
1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 

Я полностью исследовал от 1 до 14 рядов. 15 займет слишком много времени, чтобы полностью изучить. Результаты:

1/1   = 1
2/2   = 1
4/3   = 1.333
5/4   = 1.25
7/5   = 1.4
9/6   = 1.5
12/7  = 1.714
14/8  = 1.75
16/9  = 1.778
18/10 = 1.8
20/11 = 1.818
23/12 = 1.917
25/13 = 1.923
28/14 = 2

Код, приведенный ниже, является более старой версией программы. Новейшая версия находится по адресу https://github.com/thospel/personal-propertyX .

/*
  Compile using something like:
    g++ -Wall -O3 -march=native -fstrict-aliasing -std=c++11 -g propertyX.cpp -lpthread -o propertyX
*/
#include <cstdint>
#include <climits>
#include <ctgmath>
#include <iostream>
#include <vector>
#include <array>
#include <chrono>
#include <mutex>
#include <atomic>
#include <thread>

using namespace std;

const int ELEMENTS = 2;

using uint    = unsigned int;
using Element = uint64_t;
using Column  = array<Element, ELEMENTS>;
using Set     = vector<Column>;
using Sum     = uint8_t;
using Index   = uint32_t;
using sec = chrono::seconds;

int const PERIOD = 5*60;
int const MAX_ROWS = 54;
int const COL_FACTOR = (MAX_ROWS+1) | 1;                // 55
int const ROW_ZERO   = COL_FACTOR/2;                    // 27
int const ROWS_PER_ELEMENT = CHAR_BIT * sizeof(Element) / log2(COL_FACTOR); //11
Element constexpr ELEMENT_FILL(Element v = ROW_ZERO, int n = ROWS_PER_ELEMENT) {
    return n ? ELEMENT_FILL(v, n-1) * COL_FACTOR + v : 0;
}
Element constexpr POWN(Element v, int n) {
    return n ? POWN(v, n-1)*v : 1;
}
Element const ELEMENT_TOP = POWN(COL_FACTOR, ROWS_PER_ELEMENT -1);
int const MAX_COLS = ROWS_PER_ELEMENT * ELEMENTS;       // 22

atomic<Index> col_next;
atomic<uint>  period;
chrono::steady_clock::time_point start;
mutex period_mutex;

uint ratio_row;
uint ratio_col;
mutex ratio_mutex;

auto const nr_threads = thread::hardware_concurrency();
// auto const nr_threads = 1;

struct State {
    State(uint cols);
    void process(Index i);
    void extend(uint row);
    void print(uint rows);
    Index nr_columns() const { return static_cast<Index>(1) << cols_; }

    Column last_;
    Element top_;
    int top_offset_;
    uint ratio_row_ = 0;
    uint ratio_col_ = 1;
    uint cols_;
    array<Sum, MAX_ROWS + MAX_COLS -1> side;
    vector<Set> sets;
};

ostream& operator<<(ostream& os, Column const& column) {
    for (int i=0; i<ELEMENTS; ++i) {
        auto v = column[i];
        for (int j=0; j<ROWS_PER_ELEMENT; ++j) {
            auto bit = v / ELEMENT_TOP;
            cout << " " << bit;
            v -= bit * ELEMENT_TOP;
            v *= COL_FACTOR;
        }
    }
    return os;
}

State::State(uint cols) : cols_{cols} {
    sets.resize(MAX_ROWS+2);
    for (int i=0; i<2; ++i) {
        sets[i].resize(2);
        for (int j=0; j < ELEMENTS; ++j) {
            sets[i][0][j] =  ELEMENT_FILL();
            sets[i][1][j] =  static_cast<Element>(-1) - ELEMENT_FILL(1);
        }
    }
    top_ = POWN(COL_FACTOR, (cols_-1) % ROWS_PER_ELEMENT);
    top_offset_ = ELEMENTS - 1 - (cols_-1) / ROWS_PER_ELEMENT;
}

void State::print(uint rows) {
    for (auto c=0U; c<cols_;c++) {
        for (auto r=0U; r<rows;r++) {
            cout << static_cast<int>(side[cols_-c+r-1]) << " ";
        }
        cout << "\n";
    }
    cout << "----------" << endl;
}

void check(uint cols, uint t) {
    State state(cols);

    Index nr_columns = state.nr_columns();
    while (1) {
        Index col = col_next++;
        if (col >= nr_columns) break;
        state.process(col);

        auto now = chrono::steady_clock::now();
        auto elapsed = chrono::duration_cast<sec>(now-start).count();
        if (elapsed >= period) {
            lock_guard<mutex> lock{period_mutex};
            if (elapsed >= period) {
                cout << "col=" << col << "/" << nr_columns << " (" << 100.*col/nr_columns << "% " << elapsed << " s)" << endl;
                period = (elapsed/PERIOD+1)*PERIOD;
            }
        }
    }
}

void State::process(Index col) {
    last_.fill(0);
    for (uint i=0; i<cols_; ++i) {
        Element bit = col >> i & 1;
        side[i] = bit;
        Element carry = 0;
        for (int j=0; j<ELEMENTS; ++j) {
            auto c = last_[j] % COL_FACTOR;
            last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
            if (j == top_offset_ && bit) last_[j] += top_;
            carry = c;
        }
    }
    // cout << "col=" << col << ", value=" << last_ << "\n";
    extend(0);
}

void State::extend(uint row) {
    // cout << "Extend row " << row << " " << static_cast<int>(side[cols_+row-1]) << "\n";
    if (row >= MAX_ROWS) throw(range_error("row out of range"));

    // Execute subset sum. The new column is added to set {from} giving {to}
    // {sum} is the other set.
    auto const& set_from = sets[row];
    auto const& set_sum  = sets[row + 1];
    auto      & set_to   = sets[row + 2];
    if (set_to.size() == 0) {
        auto size = 3 * set_from.size() - 2;
        set_to.resize(size);
        for (int j=0; j<ELEMENTS; ++j)
            set_to[size-1][j] = static_cast<Element>(-1) - ELEMENT_FILL(1);
    }

    // Merge sort {set_from - last_} , {set_from} and {set_from + last_}
    auto ptr_sum    = &set_sum[1][0];
    auto ptr_low    = &set_from[0][0];
    auto ptr_middle = &set_from[0][0];
    auto ptr_high   = &set_from[0][0];
    Column col_low, col_high;
    for (int j=0; j<ELEMENTS; ++j) {
        col_low   [j] = *ptr_low++  - last_[j];
        col_high  [j] = *ptr_high++ + last_[j];
    }

    auto ptr_end = &set_to[set_to.size()-1][0];
    auto ptr_to  = &set_to[0][0];
    while (ptr_to < ptr_end) {
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < ptr_middle[j]) goto LOW;
            if (col_low[j] > ptr_middle[j]) goto MIDDLE;
        }
        // low == middle
        // cout << "low == middle\n";
        return;

      LOW:
        // cout << "LOW\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < col_high[j]) goto LOW0;
            if (col_low[j] > col_high[j]) goto HIGH0;
        }
        // low == high
        // cout << "low == high\n";
        return;

      MIDDLE:
        // cout << "MIDDLE\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (ptr_middle[j] < col_high[j]) goto MIDDLE0;
            if (ptr_middle[j] > col_high[j]) goto HIGH0;
        }
        // middle == high
        // cout << "middle == high\n";
        return;

      LOW0:
        // cout << "LOW0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++  = col_low[j];
            col_low[j] = *ptr_low++ - last_[j];
        }
        goto SUM;

      MIDDLE0:
        // cout << "MIDDLE0\n";
        for (int j=0; j<ELEMENTS; ++j)
            *ptr_to++ = *ptr_middle++;
        goto SUM;

      HIGH0:
        // cout << "HIGH0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++ = col_high[j];
            col_high[j] = *ptr_high++ + last_[j];
        }
        goto SUM;
      SUM:
        for (int j=-ELEMENTS; j<0; ++j) {
            if (ptr_to[j] > ptr_sum[j]) {
                ptr_sum += ELEMENTS;
                goto SUM;
            }
            if (ptr_to[j] < ptr_sum[j]) goto DONE;
        }
        // sum == to
        for (int j=-ELEMENTS; j<0; ++j)
            if (ptr_to[j] != ELEMENT_FILL()) {
                // sum == to and to != 0
                // cout << "sum == to\n";
                // cout << set_sum[(ptr_sum - &set_sum[0][0])/ELEMENTS-1] << "\n";
                return;
            }
      DONE:;
    }
    // cout << "Wee\n";
    auto row1 = row+1;
    if (0)
        for (uint i=0; i<row1+2; ++i) {
            cout << "Set " << i << "\n";
            auto& set = sets[i];
            for (auto& column: set)
                cout << column << "\n";
        }

    if (row1 * ratio_col_ > ratio_row_ * cols_) {
        ratio_row_ = row1;
        ratio_col_ = cols_;
        lock_guard<mutex> lock{ratio_mutex};

        if (ratio_row_ * ratio_col > ratio_row * ratio_col_) {

            auto now = chrono::steady_clock::now();
            auto elapsed = chrono::duration_cast<sec>(now-start).count();
            cout << "cols=" << cols_ << ",rows=" << row1 << " (" << elapsed << " s)\n";
            print(row1);
            ratio_row = ratio_row_;
            ratio_col = ratio_col_;
        }
    }

    auto last = last_;

    Element carry = 0;
    for (int j=0; j<ELEMENTS; ++j) {
        auto c = last_[j] % COL_FACTOR;
        last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
        carry = c;
    }

    side[cols_+row] = 0;
    extend(row1);

    last_[top_offset_] += top_;
    side[cols_+row] = 1;
    extend(row1);

    last_ = last;
}

void my_main(int argc, char** argv) {
    if (!col_next.is_lock_free()) cout << "col_next is not lock free\n";
    if (!period.  is_lock_free()) cout << "period is not lock free\n";

    int min_col = 2;
    int max_col = MAX_COLS;
    if (argc > 1) {
        min_col = atoi(argv[1]);
        if (min_col < 2)
            throw(range_error("Column must be >= 2"));
        if (min_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }
    if (argc > 2) {
        max_col = atoi(argv[2]);
        if (max_col < min_col)
            throw(range_error("Column must be >= " + to_string(min_col)));
        if (max_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }

    for (int cols = min_col; cols <= max_col; ++cols) {
        cout << "Trying " << cols << " columns" << endl;
        ratio_row = 0;
        ratio_col = 1;
        col_next = 0;
        period = PERIOD;
        start = chrono::steady_clock::now();
        vector<thread> threads;
        for (auto t = 1U; t < nr_threads; t++)
            threads.emplace_back(check, cols, t);
        check(cols, 0);
        for (auto& thread: threads)
            thread.join();
    }
}

int main(int argc, char** argv) {
    try {
        my_main(argc, argv);
    } catch(exception& e) {
        cerr << "Error: " << e.what() << endl;
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}
Тон Хоспел
источник
Это здорово. Великая загадка, если вы когда-нибудь сможете получить 2 балла.
Путем экстраполяции, 28/14 должно существовать, я думаю, это было бы действительно захватывающе. Но это просто вне досягаемости?
n = 14 заняло бы около 200 дней с моим текущим кодом на моем 8-ядерном процессоре. Код может быть ускорен примерно на 30%. После этого у меня заканчиваются идеи. И ваша экстраполяция кажется довольно оптимистичной в любом случае ...
Тон Хоспел
Я думаю, что циркулянт матрица 50 на 25 с первым рядом 01011011100010111101000001100111110011010100011010 может работать. Это было найдено с помощью эвристики оптимизации, которая может быть полезной.
140 часов для полного покрытия n = 14 очень впечатляюще быстро, я должен сказать.
2

Haskell 14/8 = 1,75

1 1 0 0 0 1 0 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 1
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 1 0 1 1 1 0 0 0 1 0

Ранее 9/6 = 1,5

1 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 0
1 1 1 0 1 0 1 1 0
1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 0 1 0

Я написал это, затем посмотрел на ответы на другой вопрос и был ... обескуражен.

import Data.List
import Data.Hashable
import Control.Monad
import Control.Parallel.Strategies
import Control.Parallel
import qualified Data.HashSet as S

matrix§indices = [ matrix!!i | i<-indices ]

powerset :: [a] -> [[a]]
powerset = filterM (const [True, False])

hashNub :: (Hashable a, Eq a) => [a] -> [a]
hashNub l = go S.empty l
    where
      go _ []     = []
      go s (x:xs) = if x `S.member` s
        then go s xs
        else x : go (S.insert x s) xs

getMatrix :: Int -> Int -> [Int] -> [[Int]]
getMatrix width height vector = [ vector § [x..x+width-1] | x<-[0..height-1] ]

hasDuplicate :: (Hashable a, Eq a) => [a] -> Bool
hasDuplicate m = go S.empty m
    where
        go _ [] = False
        go s (x:xs) = if x `S.member` s
            then True
            else go (S.insert x s) xs

hasProperty :: [[Int]] -> Bool
hasProperty matrix =
    let
        base = replicate (length (matrix !! 0)) 0::[Int]
    in
        if elem base matrix then
            False
        else
            if hasDuplicate matrix then
                False
            else
                if hasDuplicate (map (foldl (zipWith (+)) base) (powerset matrix)) then
                    False
                else
                    True


pmap = parMap rseq

matricesWithProperty :: Int -> Int -> [[[Int]]]
matricesWithProperty n m =
    let
        base = replicate n 0::[Int]
    in
    filter (hasProperty) $
    map (getMatrix n m) $
    sequence [ [0,1] | x<-[0..n+m-1] ]

firstMatrixWithProperty :: Int -> Int -> [[Int]]
firstMatrixWithProperty n m = head $ matricesWithProperty n m

main = mapM (putStrLn. show) $ map (firstMatrixWithProperty 8) [1..]
александр-Brett
источник
Спасибо! Ответ на Haskell всегда приветствуется. Я думаю, что первый интересный случай - 12/7. Вы можете получить это?
Я работал на двухъядерном ноутбуке 2009 года, так что нет :), хотя я попробую еще раз на более быстрой машине
alexander-brett
Очень хорошо. Я только добавил комментарий, что 21/11 побьет все предыдущие ответы.
Не могли бы вы объяснить, что именно выводит ваш код, пожалуйста?
В main, число (в этом случае 8) является высотой матрицы, и программа перебирает ширину [1..]. Для каждой комбинации высоты / ширины выводится массив столбцов допустимой матрицы.
Александр-Бретт
1

С

Вот ответ, который работает и значительно более эффективно использует память, чем Haskell. К сожалению, мой компьютер все еще слишком медленный, чтобы достичь лучшего, чем 14/8, за любой разумный период времени.

Попробуйте скомпилировать gcc -std=c99 -O2 -fopenmp -o matrices.exe matrices.cи запустить с matrices.exe width heightили подобным. Выходными данными является целое число, биты которого составляют основу для рассматриваемой матрицы, например:

$ matrices.exe 8 14
...
valid i: 1650223

Тогда, поскольку 1650223 = 0b110010010111000101111рассматриваемая матрица имеет вид:

0 0 1 1 1 0 1 0 0 1 0 0 1 1
0 ...
1 ...
0
1
1
1
1

Если кто-то с 8 ядрами и временем на руках захочет запустить это какое-то время, я думаю, что некоторые хорошие вещи могут закончиться :)


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/*
 * BEGIN WIKIPEDIA CODE
 */
const long long m1  = 0x5555555555555555; //binary: 0101...
const long long m2  = 0x3333333333333333; //binary: 00110011..
const long long m4  = 0x0f0f0f0f0f0f0f0f; //binary:  4 zeros,  4 ones ...
const long long m8  = 0x00ff00ff00ff00ff; //binary:  8 zeros,  8 ones ...
const long long m16 = 0x0000ffff0000ffff; //binary: 16 zeros, 16 ones ...
const long long m32 = 0x00000000ffffffff; //binary: 32 zeros, 32 ones
const long long hff = 0xffffffffffffffff; //binary: all ones
const long long h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
//This uses fewer arithmetic operations than any other known
//implementation on machines with fast multiplication.
//It uses 12 arithmetic operations, one of which is a multiply.
long long hamming(long long x) {
    x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
    x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
    x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
    return (x * h01)>>56;  //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
/*
 * END WIKIPEDIA CODE
 */

int main ( int argc, char *argv[] ) {
    int height;
    int width;

    sscanf(argv[1], "%d", &height);
    sscanf(argv[2], "%d", &width);

    #pragma omp parallel for
    for (
        /*
         * We know that there are 2^(h+w-1) T-matrices, defined by the entries
         * in the first row and first column. We'll let the long long i
         * represent these entries, with 1s represented by set bits.
         *
         * The first (0) and last (1) matrix we will ignore.
         */
        long long i = 1;
        i < (1 << (height+width-1))-1;
        i++
    ) {
        // Flag for keeping track as we go along.
        int isvalid = 1;

        /*
         * Start by representing the matrix as an array of columns, with each
         * non-zero matrix entry as a bit. This allows us to construct them and
         * check equality very quickly.
         */
        long *cols = malloc(sizeof(long)*width);
        long colmask = (1 << height)-1;
        for (int j = 0; j < width; j++) {
            cols[j] = (i >> j) & colmask;
            if (cols[j] == 0) {
                //check no zero rows
                isvalid = 0;
            } else {
                //check no duplicate rows
                for (int k = 0; k < j; k++) {
                    if (cols[j] == cols[k]) {
                        isvalid = 0;
                    }
                }
            }
        }

        if (isvalid == 1) {
            /*
             * We'll also represent the matrix as an array of rows, in a
             * similar manner.
             */
            long *rows = malloc(sizeof(long)*height);
            long rowmask = (1 << width)-1;
            for (int j = 0; j < height; j++) {
                rows[j] = (i >> j) & rowmask;
            }

            int *sums[(1 << width)];
            for (long j = 0; j < 1<<width; j++) {
                sums[j] = (int*)malloc(sizeof(int)*height);
            }

            for (
                /*
                 * The powerset of columns has size 2^width. Again with the
                 * long; this time each bit represents whether the
                 * corresponding row is a member of the subset. The nice thing
                 * about this is we can xor the permutation with each row,
                 * then take the hamming number of the resulting number to get
                 * the sum.
                 */
                long permutation = 1;
                (isvalid == 1) && (permutation < (1 << width)-1);
                permutation ++
            ) {
                for (int j = 0; j < height; j++) {
                    sums[permutation][j] = hamming( rows[j] & permutation);
                }
                for (int j = permutation-1; (isvalid == 1) && (j > -1); j--) {
                    if (memcmp(sums[j], sums[permutation], sizeof(int)*height) == 0) {
                        isvalid = 0;
                    }
                }
            }

            for (long j = 0; j < 1<<width; j++) {
                free(sums[j]);
            }

            free(rows);

        }

        if (isvalid == 1) {
            printf ("valid i: %ld\n", i);
        }

        free(cols);
    }

    return 0;
}
александр-Brett
источник
Я получаю alexander-brett.c: в функции 'main': alexander-brett.c: 107: 21: предупреждение: неявное объявление функции 'memcmp' [-Wimplicit-function-объявление] if (memcmp (sums [j], суммы [перестановка], sizeof (int) * height) == 0) {^ alexander-brett.c: 122: 13: предупреждение: формат "% ld" ожидает аргумент типа "long int", но аргумент 2 имеет тип " long long int '[-Wformat =] printf ("valid i:% ld \ n", i);
Сколько времени ./alexander-brett 8 14 займет у вас?
Привет Лембик, 8 14 получил 5 ответов в час для меня на четырехъядерной машине. Мне удалось скомпилировать эти заголовки на окнах, было бы странно, если бы пропал memcmp ...
alexander-brett
Я попробовал ваш код с 7 12 и один из ответов, который он выводит valid i: 7481. В Python bin (7481) это 0b1110100111001, что не достаточно долго. Есть идеи, что происходит?