Реализовать супероптимизатор для добавления

11

Задача состоит в том, чтобы написать код, который может найти небольшие логические формулы для сумм битов.

Общая задача для вашего кода - найти наименьшую возможную логическую формулу высказывания, чтобы проверить, равна ли сумма y двоичных переменных 0/1 некоторому значению x. Давайте назовем переменные x1, x2, x3, x4 и т. Д. Ваше выражение должно быть эквивалентно сумме. То есть логическая формула должна быть истинной тогда и только тогда, когда сумма равна x.

Вот наивный способ сделать это для начала. Скажите y = 15 и x = 5. Выберите все 3003 различных способа выбора 5 переменных и для каждой сделайте новое предложение с AND этих переменных И AND с отрицанием остальных переменных. В итоге вы получите 3003 предложения, каждая из которых имеет длину ровно 15, а общая стоимость составит 45054.

Ваш ответ должен быть логическим выражением такого рода, которое может быть просто вставлено, например, в python, чтобы я мог проверить его. Если два человека получают одинаковое выражение размера, код, который запускается быстрее всех, выигрывает.

Вам разрешено вводить новые переменные в ваше решение. Таким образом, в этом случае ваша логическая формула состоит из двоичных переменных y, x и некоторых новых переменных. Вся формула была бы выполнимой тогда и только тогда, когда сумма переменных y равна x.

В качестве начального упражнения некоторые люди могут захотеть начать с переменных y = 5, добавляя к x = 2. Наивный метод тогда даст стоимость 50.

Код должен принимать два значения y и x в качестве входных данных и выводить формулу и ее размер в качестве выходных данных. Стоимость решения - это просто необработанное количество переменных в его выводе. Таким образом, (a or b) and (!a or c) считается 4. Единственные допустимые операторы and, orи not.

Обновление Оказывается, есть умный способ решения этой проблемы, когда x = 1, по крайней мере, в теории.

user202729
источник
1
Это не по теме. Как вы сказали: этот вопрос касается оптимизации логического выражения. Это не проблема программирования / головоломка в любом случае.
Шиона
@shiona Задача состоит в том, чтобы придумать способ сделать это достаточно быстро. Может быть, я должен перефразировать, чтобы сделать это понятнее. Я думаю об этом как о проблеме, чтобы написать супероптимизатор.
1
Пожалуйста, определите более точно «размер». Ваше описание подразумевает, что НЕ считается. Или просто отрицание необработанной переменной не считается? Каждый двоичный И / ИЛИ считается одним?
Кит Рэндалл
1
Как введение новых переменных будет работать со счетом? Скажи, я хочу дать z[0] = y[0] and y[1], как ты хочешь, чтобы это указывалось?
Кая
1
@Lembik спасибо за ссылку в формате PDF, думаю, теперь я понимаю. Если я хочу, чтобы переменная z[0]представляла, y[0] or y[1]тогда мне просто нужно ввести предложение, которое выглядит как (y[0] or y[1]) or not z[0](или любое эквивалентное утверждение, использующее 3 допустимых оператора).
Кая,

Ответы:

8

Python, 644

Генератор простых рекурсивных уравнений. Sгенерирует уравнение, которое удовлетворяется, если список varsсуммирует до total.

Есть некоторые очевидные улучшения, которые необходимо сделать. Например, в выводе 15/5 есть много общих подвыражений.

def S(vars, total):
    # base case
    if total == 0:
        return "(" + " and ".join("not " + x for x in vars) + ")"
    if total == len(vars):
        return "(" + " and ".join(vars) + ")"

    # recursive case
    n = len(vars)/2
    clauses = []
    for s in xrange(total+1):
        if s > n or total-s > len(vars)-n: continue
        a = S(vars[:n], s)
        b = S(vars[n:], total-s)
        clauses += ["(" + a + " and " + b + ")"]
    return "(" + " or ".join(clauses) + ")"

def T(n, total):
    e = S(["x[%d]"%i for i in xrange(n)], total)
    print "equation", e
    print "score", e.count("[")

    # test it
    for i in xrange(2**n):
        x = [i/2**k%2 for k in xrange(n)]
        if eval(e) != (sum(x) == total):
            print "wrong", x

T(2, 1)
T(5, 2)
T(15, 5)

Формирует:

equation (((not x[0]) and (x[1])) or ((x[0]) and (not x[1])))
score 4
equation (((not x[0] and not x[1]) and (((not x[2]) and (x[3] and x[4])) or ((x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))))) or ((((not x[0]) and (x[1])) or ((x[0]) and (not x[1]))) and (((not x[2]) and (((not x[3]) and (x[4])) or ((x[3]) and (not x[4])))) or ((x[2]) and (not x[3] and not x[4])))) or ((x[0] and x[1]) and (not x[2] and not x[3] and not x[4])))
score 27
equation (((not x[0] and not x[1] and not x[2] and not x[3] and not x[4] and not x[5] and not x[6]) and (((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (x[11] and x[12] and x[13] and x[14])) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((x[7] and x[8] and x[9] and x[10]) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (x[13] and x[14])) or ((x[11] and x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (x[9] and x[10])) or ((x[7] and x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10]))))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (not x[3] and not x[4] and not x[5] and not x[6]))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (x[13] and x[14])) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((x[11] and x[12]) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (x[9] and x[10])) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((x[7] and x[8]) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((not x[0] and not x[1] and not x[2]) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6])))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (not x[5] and not x[6]))))) and (((not x[7] and not x[8] and not x[9] and not x[10]) and (((not x[11] and not x[12]) and (((not x[13]) and (x[14])) or ((x[13]) and (not x[14])))) or ((((not x[11]) and (x[12])) or ((x[11]) and (not x[12]))) and (not x[13] and not x[14])))) or ((((not x[7] and not x[8]) and (((not x[9]) and (x[10])) or ((x[9]) and (not x[10])))) or ((((not x[7]) and (x[8])) or ((x[7]) and (not x[8]))) and (not x[9] and not x[10]))) and (not x[11] and not x[12] and not x[13] and not x[14])))) or ((((((not x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2])))) or ((x[0]) and (not x[1] and not x[2]))) and (x[3] and x[4] and x[5] and x[6])) or ((((not x[0]) and (x[1] and x[2])) or ((x[0]) and (((not x[1]) and (x[2])) or ((x[1]) and (not x[2]))))) and (((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (x[5] and x[6])) or ((x[3] and x[4]) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))))) or ((x[0] and x[1] and x[2]) and (((not x[3] and not x[4]) and (x[5] and x[6])) or ((((not x[3]) and (x[4])) or ((x[3]) and (not x[4]))) and (((not x[5]) and (x[6])) or ((x[5]) and (not x[6])))) or ((x[3] and x[4]) and (not x[5] and not x[6]))))) and (not x[7] and not x[8] and not x[9] and not x[10] and not x[11] and not x[12] and not x[13] and not x[14])))
score 644
Кит Рэндалл
источник
Это очень мило. Как вы думаете, насколько меньше могут быть решения?
@Lembik: на самом деле не думал об этом. Вы должны будете определить новые переменные для общих подвыражений. Например, not x[0] and not x[1] and not x[2]встречается 5 раз в выражении 15/5.
Кит Рэндалл,
2

Я бы сделал это комментарий, но у меня нет репутации. Я хотел бы прокомментировать, что результаты работы Kwon & Klieber (известной как кодировка «Commander») для k = 1 были обобщены для k> = 2 Фришем и соавторами. «SAT кодировки ограничения At-Most-k». То, о чем вы спрашиваете, - это особый случай ограничения AM-k с дополнительным предложением, гарантирующим At-Least-k, что тривиально, просто дизъюнкция всех переменных с ограничением AM-k. Фриш является ведущим исследователем в моделировании ограничений, поэтому я чувствую себя комфортно, предполагая, что [(2k + 2 C k + 1) + (2k + 2 C k-1)] * n / 2 является наилучшей оценкой, известной для числа пункты обязательны, и k * n / 2 для количества новых переменных, которые будут введены. Подробности в цитируемой статье вместе с инструкциями о том, как эта кодировка построена. Это' Довольно просто написать программу для генерации этой формулы, и я думаю, что такое решение будет конкурентоспособным с любыми другими решениями, которые вы, вероятно, найдете сейчас. НТН.

zendessert
источник
Спасибо. Было бы интересно посмотреть, будет ли это лучше для моего измерения стоимости для небольших задач, где возможна некоторая исчерпывающая супероптимизация. Надеюсь, кто-то здесь попробует это.