Как эффективно разбирать файлы фиксированной ширины?

84

Я пытаюсь найти эффективный способ синтаксического анализа файлов, содержащих линии фиксированной ширины. Например, первые 20 символов представляют собой столбец, с 21:30 - еще один и так далее.

Предполагая, что строка содержит 100 символов, что было бы эффективным способом разбить строку на несколько компонентов?

Я мог бы использовать нарезку строки на строку, но это немного некрасиво, если строка большая. Есть ли другие быстрые методы?

гиперборианский
источник

Ответы:

73

Использование structмодуля стандартной библиотеки Python было бы довольно простым и очень быстрым, поскольку он написан на C.

Вот как это можно использовать для того, что вы хотите. Он также позволяет пропускать столбцы символов, задав отрицательные значения для количества символов в поле.

import struct

fieldwidths = (2, -10, 24)  # negative widths represent ignored padding fields
fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
                        for fw in fieldwidths)
fieldstruct = struct.Struct(fmtstring)
parse = fieldstruct.unpack_from
print('fmtstring: {!r}, recsize: {} chars'.format(fmtstring, fieldstruct.size))

line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fields = parse(line)
print('fields: {}'.format(fields))

Вывод:

fmtstring: '2s 10x 24s', recsize: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')

Следующие модификации позволят адаптировать его работу в Python 2 или 3 (и обработать ввод Unicode):

import struct
import sys

fieldstruct = struct.Struct(fmtstring)
if sys.version_info[0] < 3:
    parse = fieldstruct.unpack_from
else:
    # converts unicode input to byte string and results back to unicode string
    unpack = fieldstruct.unpack_from
    parse = lambda line: tuple(s.decode() for s in unpack(line.encode()))

Вот способ сделать это с помощью фрагментов строки, как вы обдумывали, но беспокоились, что это может стать слишком некрасивым. Плюс в этом, помимо того, что он не такой уж уродливый, он работает без изменений как в Python 2, так и в 3, а также может обрабатывать строки Unicode. С точки зрения скорости он, конечно, медленнее, чем версии, основанные на structмодуле, но его можно немного ускорить, убрав возможность иметь поля заполнения.

try:
    from itertools import izip_longest  # added in Py 2.6
except ImportError:
    from itertools import zip_longest as izip_longest  # name change in Py 3.x

try:
    from itertools import accumulate  # added in Py 3.2
except ImportError:
    def accumulate(iterable):
        'Return running totals (simplified version).'
        total = next(iterable)
        yield total
        for value in iterable:
            total += value
            yield total

def make_parser(fieldwidths):
    cuts = tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths))
    pads = tuple(fw < 0 for fw in fieldwidths) # bool values for padding fields
    flds = tuple(izip_longest(pads, (0,)+cuts, cuts))[:-1]  # ignore final one
    parse = lambda line: tuple(line[i:j] for pad, i, j in flds if not pad)
    # optional informational function attributes
    parse.size = sum(abs(fw) for fw in fieldwidths)
    parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
                                                for fw in fieldwidths)
    return parse

line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)  # negative widths represent ignored padding fields
parse = make_parser(fieldwidths)
fields = parse(line)
print('format: {!r}, rec size: {} chars'.format(parse.fmtstring, parse.size))
print('fields: {}'.format(fields))

Вывод:

format: '2s 10x 24s', rec size: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
Мартино
источник
+1 это хорошо. В некотором смысле я думаю, что это похоже на мой подход (по крайней мере, когда вы получаете результаты), но, очевидно, намного быстрее.
Reiner Gerecke 06
1
Как это будет работать с юникодом? Или строка в кодировке utf-8? struct.unpackпохоже, работает с двоичными данными. Я не могу заставить это работать.
Reiner Gerecke 06
3
@Reiner Gerecke: модуль struct предназначен для работы с двоичными данными. Файлы с полями фиксированной ширины являются устаревшими заданиями, которые также, скорее всего, имеют более раннюю версию UTF-8 (если не в хронологии). Байты, прочитанные из файлов, являются двоичными данными. У вас нет юникода в файлах. Чтобы получить юникод, нужно расшифровать байты.
Джон Мачин
1
@Reiner Gerecke: Уточнение: в этих устаревших форматах файлов каждое поле представляет собой фиксированное количество байтов , а не фиксированное количество символов. Хотя они вряд ли будут закодированы в UTF-8, они могут быть закодированы в кодировке с переменным количеством байтов на символ, например gbk, big5, euc-jp, shift-jis и т. Д. Если вы хотите работать в юникоде, вы невозможно декодировать сразу всю запись; вам нужно расшифровать каждое поле.
Джон Мачин
1
Это полностью нарушается, когда вы пытаетесь применить это для значений Unicode (например, в Python 3) с текстом вне набора символов ASCII, и где «фиксированная ширина» означает «фиксированное количество символов », а не байты.
Мартин Питерс
69

Я не совсем уверен, что это эффективно, но он должен быть читабельным (в отличие от ручного нарезания). Я определил функцию, slicesкоторая получает длину строки и столбца и возвращает подстроки. Я сделал его генератором, поэтому для действительно длинных строк он не создает временный список подстрок.

def slices(s, *args):
    position = 0
    for length in args:
        yield s[position:position + length]
        position += length

пример

In [32]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2))
Out[32]: ['ab']

In [33]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2, 10, 50))
Out[33]: ['ab', 'cdefghijkl', 'mnopqrstuvwxyz0123456789']

In [51]: d,c,h = slices('dogcathouse', 3, 3, 5)
In [52]: d,c,h
Out[52]: ('dog', 'cat', 'house')

Но я думаю, что преимущество генератора теряется, если вам нужны сразу все столбцы. Где можно получить выгоду, так это когда вы хотите обрабатывать столбцы один за другим, скажем, в цикле.

Райнер Гереке
источник
2
AFAICT, этот метод медленнее struct, но он удобочитаем и проще в обращении. Я сделал несколько тестов ваш slices function, structмодуль , а также reмодуль и оказывается, для больших файлов, structэто самый быстрый, reприходит второй (1.5x медленнее) и slicesтретий (2x медленнее). Однако есть небольшие накладные расходы, structпоэтому вы slices functionможете быстрее работать с небольшими файлами.
YeO
27

Еще два варианта, которые проще и красивее, чем уже упомянутые решения:

Первый - с помощью панд:

import pandas as pd

path = 'filename.txt'

# Using Pandas with a column specification
col_specification = [(0, 20), (21, 30), (31, 50), (51, 100)]
data = pd.read_fwf(path, colspecs=col_specification)

И второй вариант с использованием numpy.loadtxt:

import numpy as np

# Using NumPy and letting it figure it out automagically
data_also = np.loadtxt(path)

Это действительно зависит от того, как вы хотите использовать свои данные.

Том М
источник
Соревнуется ли это с принятым ответом по скорости?
asachet
1
Не тестировал, но это должно быть намного быстрее, чем принятый ответ.
Tom M
1
Панды могут самостоятельно выполнять автоматическое обнаружение, если вы установите colspecs='infer' pandas.pydata.org/pandas-docs/stable/generated/…
Джеймс Пол Мейсон
14

Приведенный ниже код дает набросок того, что вы можете сделать, если вам нужно серьезно заняться обработкой файлов с фиксированной шириной столбца.

«Серьезный» = несколько типов записей в каждом из нескольких типов файлов, записи размером до 1000 байт, разработчик макета и «противостоящий» производитель / потребитель - это правительственное ведомство с отношением, изменения макета приводят к появлению неиспользуемых столбцов, до миллиона записей в файле ...

Особенности: Предварительно компилирует структурные форматы. Игнорирует ненужные столбцы. Преобразует входные строки в требуемые типы данных (в скетче отсутствует обработка ошибок). Преобразует записи в экземпляры объектов (или dicts, или именованные кортежи, если хотите).

Код:

import struct, datetime, io, pprint

# functions for converting input fields to usable data
cnv_text = rstrip
cnv_int = int
cnv_date_dmy = lambda s: datetime.datetime.strptime(s, "%d%m%Y") # ddmmyyyy
# etc

# field specs (field name, start pos (1-relative), len, converter func)
fieldspecs = [
    ('surname', 11, 20, cnv_text),
    ('given_names', 31, 20, cnv_text),
    ('birth_date', 51, 8, cnv_date_dmy),
    ('start_date', 71, 8, cnv_date_dmy),
    ]

fieldspecs.sort(key=lambda x: x[1]) # just in case

# build the format for struct.unpack
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
    start = fieldspec[1] - 1
    end = start + fieldspec[2]
    if start > unpack_len:
        unpack_fmt += str(start - unpack_len) + "x"
    unpack_fmt += str(end - start) + "s"
    unpack_len = end
field_indices = range(len(fieldspecs))
print unpack_len, unpack_fmt
unpacker = struct.Struct(unpack_fmt).unpack_from

class Record(object):
    pass
    # or use named tuples

raw_data = """\
....v....1....v....2....v....3....v....4....v....5....v....6....v....7....v....8
          Featherstonehaugh   Algernon Marmaduke  31121969            01012005XX
"""

f = cStringIO.StringIO(raw_data)
headings = f.next()
for line in f:
    # The guts of this loop would of course be hidden away in a function/method
    # and could be made less ugly
    raw_fields = unpacker(line)
    r = Record()
    for x in field_indices:
        setattr(r, fieldspecs[x][0], fieldspecs[x][3](raw_fields[x]))
    pprint.pprint(r.__dict__)
    print "Customer name:", r.given_names, r.surname

Вывод:

78 10x20s20s8s12x8s
{'birth_date': datetime.datetime(1969, 12, 31, 0, 0),
 'given_names': 'Algernon Marmaduke',
 'start_date': datetime.datetime(2005, 1, 1, 0, 0),
 'surname': 'Featherstonehaugh'}
Customer name: Algernon Marmaduke Featherstonehaugh
Джон Мачин
источник
Как обновить этот код для анализа записей размером более 1000 байт? Я struct.error: unpack_from requires a buffer of at least 1157 bytes
столкнулся с
4
> str = '1234567890'
> w = [0,2,5,7,10]
> [ str[ w[i-1] : w[i] ] for i in range(1,len(w)) ]
['12', '345', '67', '890']
стенка
источник
1

Вот простой модуль для Python 3, основанный на ответе Джона Мачина - при необходимости адаптируйте :)

"""
fixedwidth

Parse and iterate through a fixedwidth text file, returning record objects.

Adapted from https://stackoverflow.com/a/4916375/243392


USAGE

    import fixedwidth, pprint

    # define the fixed width fields we want
    # fieldspecs is a list of [name, description, start, width, type] arrays.
    fieldspecs = [
        ["FILEID", "File Identification", 1, 6, "A/N"],
        ["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
        ["SUMLEV", "Summary Level", 9, 3, "A/N"],
        ["LOGRECNO", "Logical Record Number", 19, 7, "N"],
        ["POP100", "Population Count (100%)", 30, 9, "N"],
    ]

    # define the fieldtype conversion functions
    fieldtype_fns = {
        'A': str.rstrip,
        'A/N': str.rstrip,
        'N': int,
    }

    # iterate over record objects in the file
    with open(f, 'rb'):
        for record in fixedwidth.reader(f, fieldspecs, fieldtype_fns):
            pprint.pprint(record.__dict__)

    # output:
    {'FILEID': 'SF1ST', 'LOGRECNO': 2, 'POP100': 1, 'STUSAB': 'TX', 'SUMLEV': '040'}
    {'FILEID': 'SF1ST', 'LOGRECNO': 3, 'POP100': 2, 'STUSAB': 'TX', 'SUMLEV': '040'}    
    ...

"""

import struct, io


# fieldspec columns
iName, iDescription, iStart, iWidth, iType = range(5)


def get_struct_unpacker(fieldspecs):
    """
    Build the format string for struct.unpack to use, based on the fieldspecs.
    fieldspecs is a list of [name, description, start, width, type] arrays.
    Returns a string like "6s2s3s7x7s4x9s".
    """
    unpack_len = 0
    unpack_fmt = ""
    for fieldspec in fieldspecs:
        start = fieldspec[iStart] - 1
        end = start + fieldspec[iWidth]
        if start > unpack_len:
            unpack_fmt += str(start - unpack_len) + "x"
        unpack_fmt += str(end - start) + "s"
        unpack_len = end
    struct_unpacker = struct.Struct(unpack_fmt).unpack_from
    return struct_unpacker


class Record(object):
    pass
    # or use named tuples


def reader(f, fieldspecs, fieldtype_fns):
    """
    Wrap a fixedwidth file and return records according to the given fieldspecs.
    fieldspecs is a list of [name, description, start, width, type] arrays.
    fieldtype_fns is a dictionary of functions used to transform the raw string values, 
    one for each type.
    """

    # make sure fieldspecs are sorted properly
    fieldspecs.sort(key=lambda fieldspec: fieldspec[iStart])

    struct_unpacker = get_struct_unpacker(fieldspecs)

    field_indices = range(len(fieldspecs))

    for line in f:
        raw_fields = struct_unpacker(line) # split line into field values
        record = Record()
        for i in field_indices:
            fieldspec = fieldspecs[i]
            fieldname = fieldspec[iName]
            s = raw_fields[i].decode() # convert raw bytes to a string
            fn = fieldtype_fns[fieldspec[iType]] # get conversion function
            value = fn(s) # convert string to value (eg to an int)
            setattr(record, fieldname, value)
        yield record


if __name__=='__main__':

    # test module

    import pprint, io

    # define the fields we want
    # fieldspecs are [name, description, start, width, type]
    fieldspecs = [
        ["FILEID", "File Identification", 1, 6, "A/N"],
        ["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
        ["SUMLEV", "Summary Level", 9, 3, "A/N"],
        ["LOGRECNO", "Logical Record Number", 19, 7, "N"],
        ["POP100", "Population Count (100%)", 30, 9, "N"],
    ]

    # define a conversion function for integers
    def to_int(s):
        """
        Convert a numeric string to an integer.
        Allows a leading ! as an indicator of missing or uncertain data.
        Returns None if no data.
        """
        try:
            return int(s)
        except:
            try:
                return int(s[1:]) # ignore a leading !
            except:
                return None # assume has a leading ! and no value

    # define the conversion fns
    fieldtype_fns = {
        'A': str.rstrip,
        'A/N': str.rstrip,
        'N': to_int,
        # 'N': int,
        # 'D': lambda s: datetime.datetime.strptime(s, "%d%m%Y"), # ddmmyyyy
        # etc
    }

    # define a fixedwidth sample
    sample = """\
SF1ST TX04089000  00000023748        1 
SF1ST TX04090000  00000033748!       2
SF1ST TX04091000  00000043748!        
"""
    sample_data = sample.encode() # convert string to bytes
    file_like = io.BytesIO(sample_data) # create a file-like wrapper around bytes

    # iterate over record objects in the file
    for record in reader(file_like, fieldspecs, fieldtype_fns):
        # print(record)
        pprint.pprint(record.__dict__)
Брайан Бернс
источник
1

Вот как я решил с помощью словаря, который содержит начало и конец полей. Указание начальной и конечной точек также помогло мне управлять изменениями по длине столбца.

# fixed length
#      '---------- ------- ----------- -----------'
line = '20.06.2019 myname  active      mydevice   '
SLICES = {'date_start': 0,
         'date_end': 10,
         'name_start': 11,
         'name_end': 18,
         'status_start': 19,
         'status_end': 30,
         'device_start': 31,
         'device_end': 42}

def get_values_as_dict(line, SLICES):
    values = {}
    key_list = {key.split("_")[0] for key in SLICES.keys()}
    for key in key_list:
       values[key] = line[SLICES[key+"_start"]:SLICES[key+"_end"]].strip()
    return values

>>> print (get_values_as_dict(line,SLICES))
{'status': 'active', 'name': 'myname', 'date': '20.06.2019', 'device': 'mydevice'}
Влялцин
источник
1

Вот что NumPy использует под капотом (намного упрощено, но все же - этот код находится LineSplitter classвнутри _iotools module):

import numpy as np

DELIMITER = (20, 10, 10, 20, 10, 10, 20)

idx = np.cumsum([0] + list(DELIMITER))
slices = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])]

def parse(line):
    return [line[s] for s in slices]

Он не обрабатывает отрицательные разделители для игнорирования столбца, поэтому он не такой универсальный, как struct, но работает быстрее.

YeO
источник
0

Нарезка строк не должна быть уродливой, если вы держите ее в порядке. Подумайте о том, чтобы сохранить ширину ваших полей в словаре, а затем использовать связанные имена для создания объекта:

from collections import OrderedDict

class Entry:
    def __init__(self, line):

        name2width = OrderedDict()
        name2width['foo'] = 2
        name2width['bar'] = 3
        name2width['baz'] = 2

        pos = 0
        for name, width in name2width.items():

            val = line[pos : pos + width]
            if len(val) != width:
                raise ValueError("not enough characters: \'{}\'".format(line))

            setattr(self, name, val)
            pos += width

file = "ab789yz\ncd987wx\nef555uv"

entry = []

for line in file.split('\n'):
    entry.append(Entry(line))

print(entry[1].bar) # output: 987
MatrixManAtYrService
источник
0

Поскольку в моей старой работе часто обрабатывается 1 миллион строк данных фиксированной ширины, я исследовал эту проблему, когда начал использовать Python.

Есть 2 типа FixedWidth

  1. ASCII FixedWidth (длина символа ascii = 1, длина символа в двухбайтовом кодировании = 2)
  2. Unicode FixedWidth (символ ascii и длина двухбайтового символа = 1)

Если строка ресурса состоит из символов ascii, тогда ASCII FixedWidth = Unicode FixedWidth

К счастью, строка и байт в py3 разные, что уменьшает путаницу при работе с двухбайтовыми кодированными символами (eggbk, big5, euc-jp, shift-jis и т. Д.).
Для обработки «ASCII FixedWidth» строка обычно преобразуется в байты, а затем разделяется.

Не импортируя сторонние модули
totalLineCount = 1 миллион, lineLength = 800 байт, FixedWidthArgs = (10,25,4, ....), я разбил строку примерно на 5 способов и получил следующий вывод:

  1. структура самая быстрая (1x)
  2. Только цикл, а не предварительная обработка. FixedWidthArgs - самый медленный (5x +)
  3. slice(bytes) быстрее чем slice(string)
  4. Исходная строка - это результат теста в байтах: struct (1x), operator.itemgetter (1.7x), предварительно скомпилированный sliceObject и понимание списка (2.8x), объект re.patten (2.9x)

При работе с большими файлами мы часто используем with open ( file, "rb") as f:.
Метод просматривает один из вышеуказанных файлов примерно за 2,4 секунды.
Я думаю, что соответствующий обработчик, который обрабатывает 1 миллион строк данных, разбивает каждую строку на 20 полей и занимает менее 2,4 секунды.

Я только нахожу это stuctи itemgetterотвечаю требованиям

ps: Для нормального отображения я преобразовал unicode str в байты. Если вы работаете в двухбайтовой среде, вам не нужно этого делать.

from itertools import accumulate
from operator import itemgetter

def oprt_parser(sArgs):
    sum_arg = tuple(accumulate(abs(i) for i in sArgs))
    # Negative parameter field index
    cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
    # Get slice args and Ignore fields of negative length
    ig_Args = tuple(item for i, item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
    # Generate `operator.itemgetter` object
    oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
    return oprtObj

lineb = b'abcdefghijklmnopqrstuvwxyz\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4\xb6\xee\xb7\xa2\xb8\xf6\xba\xcd0123456789'
line = lineb.decode("GBK")

# Unicode Fixed Width
fieldwidthsU = (13, -13, 4, -4, 5,-5) # Negative width fields is ignored
# ASCII Fixed Width
fieldwidths = (13, -13, 8, -8, 5,-5) # Negative width fields is ignored
# Unicode FixedWidth processing
parse = oprt_parser(fieldwidthsU)
fields = parse(line)
print('Unicode FixedWidth','fields: {}'.format(tuple(map(lambda s: s.encode("GBK"), fields))))
# ASCII FixedWidth processing
parse = oprt_parser(fieldwidths)
fields = parse(lineb)
print('ASCII FixedWidth','fields: {}'.format(fields))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)
parse = oprt_parser(fieldwidths)
fields = parse(line)
print(f"fields: {fields}")

Вывод:

Unicode FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
ASCII FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')

oprt_parserсоставляет 4x make_parser(понимание списка + фрагмент)


В ходе исследования было обнаружено, что чем выше скорость процессора, тем быстрее reувеличивается эффективность метода.
Поскольку у меня нет большего количества компьютеров получше для тестирования, предоставьте мой тестовый код, если кому-то интересно, вы можете протестировать его на более быстром компьютере.

Среда выполнения:

  • ОС: win10
  • питон: 3.7.2
  • Процессор: AMD Athlon X3 450
  • HD: Seagate 1T
import timeit
import time
import re
from itertools import accumulate
from operator import itemgetter

def eff2(stmt,onlyNum= False,showResult=False):
    '''test function'''
    if onlyNum:
        rl = timeit.repeat(stmt=stmt,repeat=roundI,number=timesI,globals=globals())
        avg = sum(rl) / len(rl)
        return f"{avg * (10 ** 6)/timesI:0.4f}"
    else:
        rl = timeit.repeat(stmt=stmt,repeat=10,number=1000,globals=globals())
        avg = sum(rl) / len(rl)
        print(f"【{stmt}】")
        print(f"\tquick avg = {avg * (10 ** 6)/1000:0.4f} s/million")
        if showResult:
            print(f"\t  Result = {eval(stmt)}\n\t  timelist = {rl}\n")
        else:
            print("")

def upDouble(argList,argRate):
    return [c*argRate for c in argList]

tbStr = "000000001111000002222真2233333333000000004444444QAZ55555555000000006666666ABC这些事中文字abcdefghijk"
tbBytes = tbStr.encode("GBK")
a20 = (4,4,2,2,2,3,2,2, 2 ,2,8,8,7,3,8,8,7,3, 12 ,11)
a20U = (4,4,2,2,2,3,2,2, 1 ,2,8,8,7,3,8,8,7,3, 6 ,11)
Slng = 800
rateS = Slng // 100

tStr = "".join(upDouble(tbStr , rateS))
tBytes = tStr.encode("GBK")
spltArgs = upDouble( a20 , rateS)
spltArgsU = upDouble( a20U , rateS)

testList = []
timesI = 100000
roundI = 5
print(f"test round = {roundI} timesI = {timesI} sourceLng = {len(tStr)} argFieldCount = {len(spltArgs)}")


print(f"pure str \n{''.ljust(60,'-')}")
# ==========================================
def str_parser(sArgs):
    def prsr(oStr):
        r = []
        r_ap = r.append
        stt=0
        for lng in sArgs:
            end = stt + lng 
            r_ap(oStr[stt:end])
            stt = end 
        return tuple(r)
    return prsr

Str_P = str_parser(spltArgsU)
# eff2("Str_P(tStr)")
testList.append("Str_P(tStr)")

print(f"pure bytes \n{''.ljust(60,'-')}")
# ==========================================
def byte_parser(sArgs):
    def prsr(oBytes):
        r, stt = [], 0
        r_ap = r.append
        for lng in sArgs:
            end = stt + lng
            r_ap(oBytes[stt:end])
            stt = end
        return r
    return prsr
Byte_P = byte_parser(spltArgs)
# eff2("Byte_P(tBytes)")
testList.append("Byte_P(tBytes)")

# re,bytes
print(f"re compile object \n{''.ljust(60,'-')}")
# ==========================================


def rebc_parser(sArgs,otype="b"):
    re_Args = "".join([f"(.{{{n}}})" for n in sArgs])
    if otype == "b":
        rebc_Args = re.compile(re_Args.encode("GBK"))
    else:
        rebc_Args = re.compile(re_Args)
    def prsr(oBS):
        return rebc_Args.match(oBS).groups()
    return prsr
Rebc_P = rebc_parser(spltArgs)
# eff2("Rebc_P(tBytes)")
testList.append("Rebc_P(tBytes)")

Rebc_Ps = rebc_parser(spltArgsU,"s")
# eff2("Rebc_Ps(tStr)")
testList.append("Rebc_Ps(tStr)")


print(f"struct \n{''.ljust(60,'-')}")
# ==========================================

import struct
def struct_parser(sArgs):
    struct_Args = " ".join(map(lambda x: str(x) + "s", sArgs))
    def prsr(oBytes):
        return struct.unpack(struct_Args, oBytes)
    return prsr
Struct_P = struct_parser(spltArgs)
# eff2("Struct_P(tBytes)")
testList.append("Struct_P(tBytes)")

print(f"List Comprehensions + slice \n{''.ljust(60,'-')}")
# ==========================================
import itertools
def slice_parser(sArgs):
    tl = tuple(itertools.accumulate(sArgs))
    slice_Args = tuple(zip((0,)+tl,tl))
    def prsr(oBytes):
        return [oBytes[s:e] for s, e in slice_Args]
    return prsr
Slice_P = slice_parser(spltArgs)
# eff2("Slice_P(tBytes)")
testList.append("Slice_P(tBytes)")

def sliceObj_parser(sArgs):
    tl = tuple(itertools.accumulate(sArgs))
    tl2 = tuple(zip((0,)+tl,tl))
    sliceObj_Args = tuple(slice(s,e) for s,e in tl2)
    def prsr(oBytes):
        return [oBytes[so] for so in sliceObj_Args]
    return prsr
SliceObj_P = sliceObj_parser(spltArgs)
# eff2("SliceObj_P(tBytes)")
testList.append("SliceObj_P(tBytes)")

SliceObj_Ps = sliceObj_parser(spltArgsU)
# eff2("SliceObj_Ps(tStr)")
testList.append("SliceObj_Ps(tStr)")


print(f"operator.itemgetter + slice object \n{''.ljust(60,'-')}")
# ==========================================

def oprt_parser(sArgs):
    sum_arg = tuple(accumulate(abs(i) for i in sArgs))
    cuts = tuple(i for i,num in enumerate(sArgs) if num < 0)
    ig_Args = tuple(item for i,item in enumerate(zip((0,)+sum_arg,sum_arg)) if i not in cuts)
    oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
    return oprtObj

Oprt_P = oprt_parser(spltArgs)
# eff2("Oprt_P(tBytes)")
testList.append("Oprt_P(tBytes)")

Oprt_Ps = oprt_parser(spltArgsU)
# eff2("Oprt_Ps(tStr)")
testList.append("Oprt_Ps(tStr)")

print("|".join([s.split("(")[0].center(11," ") for s in testList]))
print("|".join(["".center(11,"-") for s in testList]))
print("|".join([eff2(s,True).rjust(11," ") for s in testList]))

Вывод:

Test round = 5 timesI = 100000 sourceLng = 744 argFieldCount = 20
...
...
   Str_P | Byte_P | Rebc_P | Rebc_Ps | Struct_P | Slice_P | SliceObj_P|SliceObj_Ps| Oprt_P | Oprt_Ps
-----------|-----------|-----------|-----------|-- ---------|-----------|-----------|-----------|---- -------|-----------
     9.6315| 7.5952| 4.4187| 5.6867| 1.5123| 5.2915| 4.2673| 5.7121| 2.4713| 3.9051
Notback
источник
@MartijnPieters Более эффективная функция
notback
0

Мне нравится обрабатывать текстовые файлы, содержащие поля фиксированной ширины, с использованием регулярных выражений . В частности, с использованием именованных групп захвата . Это быстро, не требует импорта больших библиотек и достаточно наглядно и удобно (на мой взгляд).

Мне также нравится тот факт, что названные группы захвата в основном автоматически документируют формат данных, действуя как своего рода спецификация данных , поскольку каждая группа захвата может быть написана для определения имени каждого поля, типа данных и длины.

Вот простой пример ...

import re

data = [
    "1234ABCDEFGHIJ5", 
    "6789KLMNOPQRST0"
]

record_regex = (
    r"^"
    r"(?P<firstnumbers>[0-9]{4})"
    r"(?P<middletext>[a-zA-Z0-9_\-\s]{10})"
    r"(?P<lastnumber>[0-9]{1})"
    r"$"
)

records = []

for line in data:
    match = re.match(record_regex, line)
    if match:
        records.append(match.groupdict())

print(records)

... что дает удобный словарь каждой записи:

[
    {'firstnumbers': '1234', 'lastnumber': '5', 'middletext': 'ABCDEFGHIJ'},
    {'firstnumbers': '6789', 'lastnumber': '0', 'middletext': 'KLMNOPQRST'}
]

Если вы не знакомы (или не знакомы) с регулярными выражениями Python или именованными группами захвата, доступны полезные инструменты, такие как онлайн-тестер регулярных выражений и отладчик .

Вернер
источник