Затенение графика плотности ядра между двумя точками.

95

Я часто использую графики плотности ядра, чтобы проиллюстрировать распределения. Их легко и быстро создать в R, например:

set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)
#or in one line like this: plot(density(rnorm(100)^2))

Что дает мне этот красивый маленький PDF:

введите описание изображения здесь

Я хочу заштриховать область под PDF от 75 до 95 процентилей. Точки легко вычислить с помощью quantileфункции:

q75 <- quantile(draws, .75)
q95 <- quantile(draws, .95)

Но как мне заштриховать область между q75и q95?

JD Long
источник
Можете ли вы привести пример затенения внешней части вашего диапазона по сравнению с внутренней частью вашего диапазона? Спасибо.
Milktrader

Ответы:

75

Что касается polygon()функции, см. Ее страницу справки, и я думаю, что у нас здесь тоже были похожие вопросы.

Вам нужно найти индекс значений квантилей, чтобы получить фактические (x,y)пары.

Изменить: вот так:

x1 <- min(which(dens$x >= q75))  
x2 <- max(which(dens$x <  q95))
with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))

Вывод (добавлен JDL)

введите описание изображения здесь

Дирк Эддельбюттель
источник
3
Я бы никогда не добился, чтобы это работало, если бы вы не предоставили структуру. Спасибо!
JD Long
2
Это одна из тех вещей ... которые были demo(graphics)вовремя еще до рассвета, так что время от времени попадаются. Та же идея для затенения регрессии NBER и т. Д.
Дирк Эддельбюттель,
1
оххх. Я ЗНАЛ, что где-то видел это, но не мог извлечь из своего ментального индекса, где я это видел. Я рад, что твой умственный индекс лучше моего.
JD Long
70

Другое решение:

dd <- with(dens,data.frame(x,y))

library(ggplot2)

qplot(x,y,data=dd,geom="line")+
  geom_ribbon(data=subset(dd,x>q75 & x<q95),aes(ymax=y),ymin=0,
              fill="red",colour=NA,alpha=0.5)

Результат:

альтернативный текст

Бен Болкер
источник
21

Расширенное решение:

Если вы хотите заштриховать оба хвоста (скопировать и вставить код Дирка) и использовать известные значения x:

set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)
plot(dens)

q2     <- 2
q65    <- 6.5
qn08   <- -0.8
qn02   <- -0.2

x1 <- min(which(dens$x >= q2))  
x2 <- max(which(dens$x <  q65))
x3 <- min(which(dens$x >= qn08))  
x4 <- max(which(dens$x <  qn02))

with(dens, polygon(x=c(x[c(x1,x1:x2,x2)]), y= c(0, y[x1:x2], 0), col="gray"))
with(dens, polygon(x=c(x[c(x3,x3:x4,x4)]), y= c(0, y[x3:x4], 0), col="gray"))

Результат:

Двусторонний поли

Торговец молоком
источник
У меня есть файл png и я разместил его на freeimagehosting, и он может не загружаться, потому что ... я не уверен.
Milktrader
Очень размытый файл. Не могли бы вы воссоздать его и загрузить прямо сюда. У SO есть свои собственные серверы для этого?
Dirk Eddelbuettel
Извините, но я не вижу, как напрямую загрузить его в SO.
Milktrader
18

На этот вопрос нужен latticeответ. Вот очень простой, просто адаптируя метод, используемый Дирком и другими:

#Set up the data
set.seed(1)
draws <- rnorm(100)^2
dens <- density(draws)

#Put in a simple data frame   
d <- data.frame(x = dens$x, y = dens$y)

#Define a custom panel function;
# Options like color don't need to be hard coded    
shadePanel <- function(x,y,shadeLims){
    panel.lines(x,y)
    m1 <- min(which(x >= shadeLims[1]))
    m2 <- max(which(x <= shadeLims[2]))
    tmp <- data.frame(x1 = x[c(m1,m1:m2,m2)], y1 = c(0,y[m1:m2],0))
    panel.polygon(tmp$x1,tmp$y1,col = "blue")
}

#Plot
xyplot(y~x,data = d, panel = shadePanel, shadeLims = c(1,3))

введите описание изображения здесь

Joran
источник
3

Вот еще один ggplot2вариант, основанный на функции, которая аппроксимирует плотность ядра при исходных значениях данных:

approxdens <- function(x) {
    dens <- density(x)
    f <- with(dens, approxfun(x, y))
    f(x)
}

Использование исходных данных (вместо создания нового фрейма данных со значениями x и y оценки плотности) дает преимущество работы с фасетными графиками, где значения квантилей зависят от переменной, по которой группируются данные:

Используемый код

library(tidyverse)
library(RColorBrewer)

# dummy data
set.seed(1)
n <- 1e2
dt <- tibble(value = rnorm(n)^2)

# function that approximates the density at the provided values
approxdens <- function(x) {
    dens <- density(x)
    f <- with(dens, approxfun(x, y))
    f(x)
}

probs <- c(0.75, 0.95)

dt <- dt %>%
    mutate(dy = approxdens(value),                         # calculate density
           p = percent_rank(value),                        # percentile rank 
           pcat = as.factor(cut(p, breaks = probs,         # percentile category based on probs
                                include.lowest = TRUE)))

ggplot(dt, aes(value, dy)) +
    geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
    geom_line() +
    scale_fill_brewer(guide = "none") +
    theme_bw()



# dummy data with 2 groups
dt2 <- tibble(category = c(rep("A", n), rep("B", n)),
              value = c(rnorm(n)^2, rnorm(n, mean = 2)))

dt2 <- dt2 %>%
    group_by(category) %>% 
    mutate(dy = approxdens(value),    
           p = percent_rank(value),
           pcat = as.factor(cut(p, breaks = probs,
                                include.lowest = TRUE)))

# faceted plot
ggplot(dt2, aes(value, dy)) +
    geom_ribbon(aes(ymin = 0, ymax = dy, fill = pcat)) +
    geom_line() +
    facet_wrap(~ category, nrow = 2, scales = "fixed") +
    scale_fill_brewer(guide = "none") +
    theme_bw()

Создано 13.07.2018 пакетом REPEX (v0.2.0).

Мэтт Флор
источник