Компьютерная трещина почвы

43

Напишите программу, которая принимает целое число от 0 до 65535 (2 16 -1) и генерирует уникальное изображение размером 500 × 500 пикселей, которое максимально похоже на эти 6 реальных изображений потрескавшейся почвы:

образец почвы с трещинами 1 треснувший образец почвы 2 треснувший образец почвы 3 треснувший образец почвы 4 образец почвы с трещинами 5 образец почвы с трещинами 6
Это миниатюры, нажмите на них, чтобы увидеть полноразмерные изображения размером 500 × 500.

Цель здесь - сделать ваши компьютерные изображения максимально реалистичными . Поэтому в идеале, если бы любое из изображений, выводимых вашей программой, было смешано с 6 изображениями выше, кто-то, увидевший изображения в первый раз, не сможет отличить сгенерированные компьютером от настоящих.

Однако идеальный фотореализм - это сложно, так что делайте все возможное. Это поэтому за ответы, которые имеют более реалистичные результаты, будет больше голосов, и они с большей вероятностью выиграют.

правила

  • Вы можете использовать функции обработки изображений или библиотеки.

  • Вы можете основывать свой алгоритм на информации , собранной из 6 образцов изображений, но ваши 65536 (2 16 ) возможные выходных изображения должны быть визуально отличаются друг от друга и примеров изображений, особенно в отношении расположения трещин. Вы должны действительно генерировать свои изображения, а не просто вращать и переводить выборку из уже существующей фотографии.

  • В противном случае вы не должны жестко кодировать свои выводы. Следует использовать общий алгоритм, и числа, превышающие 65535, должны теоретически давать действительные результаты. (Я ограничил это только для размещения целочисленных типов с небольшим максимальным значением.)

  • Входное целое число можно рассматривать как начальное число, которое приводит к случайному растрескавшемуся выходному изображению почвы. Он должен быть детерминированным, поэтому один и тот же вход всегда должен приводить к одному и тому же результату.

  • Выходные изображения должны быть точно 500 × 500 пикселей.

  • Выходные изображения могут быть сохранены в любом обычном формате файла изображения или просто отображены.

  • Не забудьте включить несколько примеров выходных изображений в ваш ответ, и их соответствующие номера ввода.

  • Ответ с наибольшим количеством голосов побеждает. Избирателям следует, конечно, повышать число ответов, которые пытаются создать изображения, подобные 6 образцам, и понижать число ответов, которые нарушают правила или дают противоречивые результаты.

6 образцов изображений были взяты с texturelib.com . Выбор области 1000 × 1000 пикселей был взят из двух больших изображений потрескавшейся почвы, а затем был изменен до 500 × 500. Вы можете использовать анализ этих больших изображений в своей программе, но вывод должен специально имитировать 6 выбранных образцов изображений.

Кальвин Хобби
источник
6
Я проголосовал за то, чтобы закрыть этот вызов как слишком широкий, потому что в нем отсутствуют объективные критерии достоверности .
AdmBorkBork
4
@HelkaHomba ли был старый вызов хорошо принят или нет , не должен иметь отношения ли вызов в настоящее время согласуется с правилами сайта, определяется на основе консенсуса. В последние месяцы PopCons широко обсуждали, и одним из результатов этого стало то, что всем PopCons нужен объективный критерий достоверности. Этот вызов не имеет этого. Таким образом, это слишком широко.
AdmBorkBork
15
Нынешние правила о поп-минусах настолько глупы, что я бы воспользовался этой возможностью, чтобы проигнорировать их и посмотреть, как это работает. Эта тема была поднята на мета, где обсуждается до смерти, но на самом деле ничего не меняется, поэтому я думаю, что лучший шанс на что-то происходящее - это оставить некоторые поп-минусы и посмотреть, как они это делают.
xnor
6
Здесь объективные критерии достоверности являются «уникальными» (отличными от других 65535) и «500x500 пикселей». Сходство с примерами изображений не может быть определено объективно, иначе это будет не конкурс популярности, а вызов кода.
Трихоплакс
14
Я вижу плохие поп-минусы, такие как «сделать что-то красивое» без ограничений, и хорошие поп-минусы, такие как «соответствовать этой спецификации», когда люди голосуют за то, что подходит лучше всего. Я определенно вижу этот вызов как хороший вид.
Трихоплакс

Ответы:

30

Mathematica

Диаграмма Вороного выглядит как этот рисунок из Википедии, показывая 19 ячеек, каждая из которых содержит одну точку семян. Ячейка состоит из субрегиона точек, в котором соответствующая генерирующая точка находится ближе, чем любая из других начальных точек.

Вороного

Код ниже генерирует диаграмму из 80 случайных точек (в квадратной области, ограниченной (-1, -1) и (1,1)).

Он использует полигональные примитивы (в 2D) на диаграмме для построения многогранников (в 3D). Представьте, что у каждого многоугольника есть только перевод (-.08 в z). Думайте о двух многоугольниках как о верхней и нижней грани многогранника. Затем добавляются «боковые грани» для завершения многогранника.

Каждый многогранник затем переводится наружу, из центра изображения, на плоскость xy; оно удаляется от середины. Величина трансляции напрямую зависит от расстояния между исходной многогранной генерирующей случайной точкой и центром экрана. Это «растяжение» многогранников в плоскости ху приводит к расщелинам.

crackedMud[1]

один

crackedMud[65535]

прошлой

Код

ClearAll[polyhedronFromPolygon, voronoiPolygons, generatingPointFromPolygon, crackedMud]


(* polyhedronFromPolygon returns a single polyhedron from a polygon *)

polyhedronFromPolygon[polygon_] :=      
 Module[{twoPolygons, verticesOfUpperPolygonCell, nVertices, n = 1},
 verticesOfUpperPolygonCell = Join @@ (polygon[[1]] /. {x_, y_} :> {{x, y, 0}, {x, y, -.08}});
 (* number of vertices in a single *Voronoi* cell *)
 nVertices = Length[verticesOfUpperPolygonCell]/2;   

(*vertex indices of the upper and lower polygon faces *)  
twoPolygons = Select[Range@(2*nVertices), #] & /@ {OddQ, EvenQ};    

(*vertex indices of a rectangular face of the polyhedron *)
While[n < nVertices + 1, AppendTo[twoPolygons,
    {twoPolygons[[1, n]], twoPolygons[[2, n]], 
     twoPolygons[[2, If[n + 1 < nVertices + 1, n + 1, 1]]], 
     twoPolygons[[1, If[n + 1 < nVertices + 1, n + 1, 1]]]}]; n++];
(*the graphics complex returned is a polyhedron, even though it says Polygon *)
 GraphicsComplex[verticesOfUpperPolygonCell, Polygon[twoPolygons]] ] 


(* takes two dimensional coordinates and returns all of the cells of a Voronoi diagram *)

voronoiPolygons[pts_] := 
Module[{voronoiRegion, data},
  voronoiRegion = VoronoiMesh[pts, ImageSize -> Medium, 
  PlotTheme -> "Lines", Axes -> True, AxesOrigin -> {0, 0}];
  data = Join @@ (MeshPrimitives[voronoiRegion, 2][[All, 1]] /. {x_, y_} :> {{x, y, 0}, {x, y, .04}});
 (* the mesh primitives are the polygons *)
  MeshPrimitives[voronoiRegion, 2]]   

(* Returns, in 3D, the point which was used to generate the nth Voronoi cell. *)
generatingPointFromPolygon[n_, points_, pgons_] := 
 FirstCase[points, {x_, y_} /; RegionMember[pgons[[n]], {x, y}] :> {x,y,0}]

crackedMud[seedNumber_] :- 
 Module[{pts, pts3D, geometricImage, nPts, polygons, polyhedra, centerPtinImage},
  SeedRandom[seedNumber];
  nPts = 80;
  pts = RandomReal[{-1, 1}, {nPts, 2}];
  pts3D = pts /. {x_, y_} :> {x, y, .0};
  polygons = voronoiPolygons[pts];
  polyhedra = polyhedronFromPolygon /@ polygons;
  centerPtinImage =   (Mean /@ (PlotRange /. 
        AbsoluteOptions[
         Graphics3D[{polyhedra, Blue, Point@pts3D}, Axes -> False, 
         Boxed -> False]])) /. {x_Real, y_, _} :> {x, y, 0};
  geometricImage =
  Graphics3D[{RGBColor[0.75, 0.75, 0.8], EdgeForm[Darker@Gray],
        (* # is the nth polygon which yields the nth polyhedron *)
        (* generatingPointFromPolygon returns the point the generated the #th polygon *)

     GeometricTransformation[{polyhedronFromPolygon[polygons[[#]]]},   
        TranslationTransform[(generatingPointFromPolygon[#, pts, polygons] - centerPtinImage)/5]] & /@ Range@nPts},
         Axes -> False,  Boxed -> False, ViewPoint -> {0., -1, 1.5}, 
         Background -> Black, ImageSize -> 1200];

     (*ImageTrim returns a 500 by 500 pixel clip from the center of the image *)
     ImageTrim[
        (*ImageEffect speckles the image *)
        ImageEffect[Rasterize[geometricImage], {"Noise", 1/5}], 
     {{250, 250}, {750, 750}}]
  ] 
DavidC
источник
Вы могли бы преуспеть, чтобы приспособиться к этому к изготовителю образца разбитого стекла.
Спарр
@Sparr, да, это похоже на разбитое стекло (или плитки).
DavidC
Golfed ........?
кошка
@ Cat Нет, это не игра в гольф.
DavidC
@DavidC Где все пробелы? Ты так пишешь? Применяет ли Wolfram нечитаемый код?
кошка
24

Джава

Я использовал подход, основанный на рекурсивных диаграммах Вороного. Выводы выглядят не очень реалистично, но я думаю, что они в порядке.

Вот несколько примеров изображений (размер которых уменьшен до 250x250, чтобы он не занимал весь экран):

0:

Изображение 0

1:

Изображение 1

Подробнее об алгоритме:

Все изображения в этом разделе используют одно и то же семя.

Алгоритм начинается с генерации диаграммы Вороного с 5 точками:

Диаграмма Вороного

Если мы посмотрим на исходные изображения в задании, то увидим, что линии не все прямые, поэтому мы взвешиваем расстояние по случайному значению, исходя из угла к точке, также, чем ближе углы, тем ближе значения :

Весовая диаграмма Вороного

Теперь мы рекурсивно рисуем такие диаграммы Вороного внутри каждой области с более тонкой и прозрачной линией и удаляем фон с максимальной глубиной рекурсии, равной 3, и получаем:

Рекурсивный Вороной

Теперь мы просто добавляем бледно-коричневый фон, и все готово!

Выполнено!

Код:

Код состоит из трех классов, Main.java, VoronoiPoint.javaи Vector.java:

Main.java:

import java.awt.Desktop;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Random;

import javax.imageio.ImageIO;

public class Main {
    public static int WIDTH = 500;
    public static int HEIGHT = 500;
    public static int RECURSION_LEVELS = 3;
    public static int AMOUNT_OF_POINTS = 5;
    public static int ROTATION_RESOLUTION = 600;
    public static int ROTATION_SMOOTHNESS = 10;
    public static int BACKGROUND = 0xFFE0CBAD;

    public static Random RAND;

    public static void main(String[] args) {

        int seed = new Random().nextInt(65536);
        if (args.length == 1) {
            System.out.println(Arrays.toString(args));
            seed = Integer.parseInt(args[0]);
        } else {
            System.out.println("Generated seed: " + seed);
        }
        RAND = new Random(seed);

        ArrayList<Vector> points = new ArrayList<Vector>();
        for (int x = 0; x < WIDTH; x++) {
            for (int y = 0; y < HEIGHT; y++) {
                points.add(new Vector(x, y));
            }
        }
        BufferedImage soil = generateSoil(WIDTH, HEIGHT, seed, points, AMOUNT_OF_POINTS, RECURSION_LEVELS);

        BufferedImage background = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_ARGB);
        for (int x = 0; x < background.getWidth(); x++) {
            for (int y = 0; y < background.getHeight(); y++) {
                background.setRGB(x, y, BACKGROUND ^ (RAND.nextInt(10) * 0x010101));
            }
        }

        Graphics g = background.getGraphics();
        g.drawImage(soil, 0, 0, null);
        g.dispose();

        String fileName = "soil";
        File output = new File(fileName + ".png");
        for (int i = 0; output.exists(); i++) {
            output = new File(fileName + i + ".png");
        }
        try {
            ImageIO.write(background, "png", output);
            Desktop.getDesktop().open(output);
        } catch (IOException e) {
            e.printStackTrace();
        }
        System.out.println("Done. Saved as " + output);
    }

    private static BufferedImage generateSoil(int width, int height, int seed, ArrayList<Vector> drawPoints,
            int amountOfPoints, int recursionLevel) {

        BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);

        ArrayList<VoronoiPoint> points = new ArrayList<VoronoiPoint>();
        for (int i = 0; i < amountOfPoints; i++) {
            points.add(new VoronoiPoint(drawPoints.get(RAND.nextInt(drawPoints.size()))));
        }

        HashMap<Integer, ArrayList<Vector>> pointMaps = new HashMap<Integer, ArrayList<Vector>>();
        for (VoronoiPoint point : points) {
            pointMaps.put(point.hashCode(), new ArrayList<Vector>());
        }
        System.out.println(pointMaps);

        System.out.println(points);

        for (Vector v : drawPoints) {
            VoronoiPoint closest = null;
            VoronoiPoint secondClosest = null;

            for (VoronoiPoint point : points) {
                double distance = point.getMultiplicativeDistanceTo(v);
                if (closest == null || distance < closest.getMultiplicativeDistanceTo(v)) {
                    secondClosest = closest;
                    closest = point;
                } else if (secondClosest == null || distance < secondClosest.getMultiplicativeDistanceTo(v)) {
                    secondClosest = point;
                }
            }

            int col = 0;
            if (Math.abs(closest.getMultiplicativeDistanceTo(v)
                    - secondClosest.getMultiplicativeDistanceTo(v)) < (recursionLevel * 5 / RECURSION_LEVELS)) {
                col = 0x01000000 * (recursionLevel * 255 / RECURSION_LEVELS);
            } else {
                pointMaps.get(closest.hashCode()).add(v);
            }
            result.setRGB((int) v.getX(), (int) v.getY(), col);
        }
        Graphics g = result.getGraphics();
        if (recursionLevel > 0) {
            for (ArrayList<Vector> pixels : pointMaps.values()) {
                if (pixels.size() > 10) {
                    BufferedImage img = generateSoil(width, height, seed, pixels, amountOfPoints,
                            recursionLevel - 1);
                    g.drawImage(img, 0, 0, null);
                }
            }
        }
        g.dispose();

        return result;
    }

    public static int modInts(int a, int b) {
        return (int) mod(a, b);
    }

    public static double mod(double a, double b) {
        a = a % b;
        while (a < 0)
            a += b;
        return a;
    }
}

VoronoiPoint.java:

public class VoronoiPoint {

    private Vector pos;
    private double[] distances;

    public VoronoiPoint(Vector pos) {
        this.pos = pos;
        distances = new double[Main.ROTATION_RESOLUTION];
        for (int i = 0; i < distances.length; i++)
            distances[i] = Main.RAND.nextFloat() / 2 + 0.51;

        for (int iter = 0; iter < Main.ROTATION_SMOOTHNESS; iter++) {
            for (int i = 0; i < distances.length; i++) {
                distances[i] = (distances[Main.modInts(i - Main.RAND.nextInt(4) - 2, distances.length)] + distances[i]
                        + distances[Main.modInts(i + Main.RAND.nextInt(4) - 2, distances.length)]) / 3;
            }
        }
    }

    public Vector getPos() {
        return pos;
    }

    public double getRotationFromAngle(double radians) {
        return distances[(int) (Main.mod(Math.toDegrees(radians) / 360, 1) * distances.length)];
    }

    public double getRotationFromVector(Vector vec) {
        return getRotationFromAngle(Math.atan2(pos.getY() - vec.getY(), -(pos.getX() - vec.getX())));
    }

    public double getMultiplicativeDistanceTo(Vector other) {
        return pos.getLengthTo(other) * getRotationFromVector(other);
    }

    public String toString() {
        return "VoronoiPoint(pos=[" + pos.getX() + ", " + pos.getY() + "])";
    }

    public int hashCode() {
        return distances.hashCode() ^ pos.hashCode();
    }
}

Vector.java: (Этот класс скопирован из одного из моих других проектов, поэтому он содержит некоторый ненужный код)

package com.loovjo.soil;

import java.util.ArrayList;
import java.util.Random;

public class Vector {
    private static final float SMALL = 1f / Float.MAX_EXPONENT * 100;
    private float x, y;

    public Vector(float x, float y) {
        this.setX(x);
        this.setY(y);
    }

    public Vector(int x, int y) {
        this.setX(x);
        this.setY(y);
    }

    public Vector(double x, double y) {
        this.setX((float) x);
        this.setY((float) y);
    }

    public float getY() {
        return y;
    }

    public void setY(float y) {
        this.y = y;
    }

    public float getX() {
        return x;
    }

    public void setX(float x) {
        this.x = x;
    }

    /*
     * Gets the length ^ 2 This is faster than getting the length.
     */
    public float getLengthToSqrd(float x, float y) {
        return (float) ((this.x - x) * (this.x - x) + (this.y - y) * (this.y - y));
    }

    public float getLengthToSqrd(Vector v) {
        return getLengthToSqrd(v.x, v.y);
    }

    public float getLengthSqrd() {
        return getLengthToSqrd(0, 0);
    }

    public float getLengthTo(float x, float y) {
        return (float) Math.sqrt(getLengthToSqrd(x, y));
    }

    public float getLengthTo(Vector v) {
        return getLengthTo(v.x, v.y);
    }

    public float getLength() {
        return getLengthTo(0, 0);
    }

    public Vector setLength(float setLength) {
        float length = getLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public float getFastLengthTo(float x, float y) {
        return getFastLengthTo(new Vector(x, y));
    }

    public float getFastLengthTo(Vector v) {
        float taxiLength = getTaxiCabLengthTo(v);
        float chebyDist = getChebyshevDistanceTo(v);
        return Float.min(taxiLength * 0.7f, chebyDist);
    }

    public float getFastLength() {
        return getLengthTo(0, 0);
    }

    public Vector setFastLength(float setLength) {
        float length = getFastLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public float getTaxiCabLengthTo(float x, float y) {
        return Math.abs(this.x - x) + Math.abs(this.y - y);
    }

    public float getTaxiCabLengthTo(Vector v) {
        return getTaxiCabLengthTo(v.x, v.y);
    }

    public float getTaxiCabLength() {
        return getTaxiCabLengthTo(0, 0);
    }

    public Vector setTaxiCabLength(float setLength) {
        float length = getTaxiCabLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public Vector absIfBoth() {
        if (x < 0 && y < 0)
            return new Vector(-x, -y);
        return this;
    }

    public Vector abs() {
        return new Vector(x < 0 ? -x : x, y < 0 ? -y : y);
    }

    public float getChebyshevDistanceTo(float x, float y) {
        return Math.max(Math.abs(this.x - x), Math.abs(this.y - y));
    }

    public float getChebyshevDistanceTo(Vector v) {
        return getChebyshevDistanceTo(v.x, v.y);
    }

    public float getChebyshevDistance() {
        return getChebyshevDistanceTo(0, 0);
    }

    public Vector setChebyshevLength(float setLength) {
        float length = getChebyshevDistance();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public Vector sub(Vector v) {
        return new Vector(this.x - v.getX(), this.y - v.getY());
    }

    public Vector add(Vector v) {
        return new Vector(this.x + v.getX(), this.y + v.getY());
    }

    public Vector mul(Vector v) {
        return new Vector(this.x * v.getX(), this.y * v.getY());
    }

    public Vector mul(float f) {
        return mul(new Vector(f, f));
    }

    public Vector div(Vector v) {
        return new Vector(this.x / v.getX(), this.y / v.getY());
    }

    public Vector div(float f) {
        return div(new Vector(f, f));
    }

    public Vector mod(Vector v) {
        return new Vector(this.x % v.getX(), this.y % v.getY());
    }

    public Vector mod(int a, int b) {
        return mod(new Vector(a, b));
    }

    public Vector mod(int a) {
        return mod(a, a);
    }

    public String toString() {
        return "Vector(" + getX() + ", " + getY() + ")";
    }

    /*
     * Returns a list with vectors, starting with this, ending with to, and each
     * one having length between them
     */
    public ArrayList<Vector> loop(Vector to, float length) {
        Vector delta = this.sub(to);
        float l = delta.getLength();
        ArrayList<Vector> loops = new ArrayList<Vector>();
        for (float i = length; i < l; i += length) {
            delta.setLength(i);
            loops.add(delta.add(to));
        }
        loops.add(this);

        return loops;
    }

    public boolean intersects(Vector pos, Vector size) {
        pos.sub(this);
        if (pos.getX() < getX())
            return false;
        if (pos.getY() < getY())
            return false;
        return true;
    }

    public Vector copy() {
        return new Vector(x, y);
    }

    public void distort(float d) {
        x += Math.random() * d - d / 2;
        y += Math.random() * d - d / 2;
    }

    @Override
    public boolean equals(Object o) {
        if (o instanceof Vector) {
            Vector v = (Vector) o;
            return getLengthToSquared(v) < SMALL * SMALL;
        }
        return false;
    }

    private float getLengthToSquared(Vector v) {
        return sub(v).getLengthSquared();
    }

    private float getLengthSquared() {
        return x * x + y * y;
    }

    public boolean kindaEquals(Vector o, int i) {
        if (o.x + i < x)
            return false;
        if (o.x - i > x)
            return false;
        if (o.y + i < y)
            return false;
        if (o.y - i > y)
            return false;
        return true;
    }
    /*
     * Gets the direction, from 0 to 8.
     */
    public int getDirection() {
        return (getDirectionInDegrees()) / (360 / 8);
    }
    /*
     * Gets the direction in degrees.
     */
    public int getDirectionInDegrees() {
        return (int) positize((float) Math.toDegrees(Math.atan2(x, -y)), 360f);
    }

    private float positize(float f, float base) {
        while (f < 0)
            f += base;
        return f;
    }
    // 0 = north,
            // 1 = northeast,
            // 2 = east,
            // 3 = southeast,
            // 4 = south,
            // 5 = southwest,
            // 6 = west,
            // 7 = northwest
    public Vector moveInDir(int d) {
        d = d % 8;
        d = (int) positize(d, 8);

        if (d == 0)
            return this.add(new Vector(0, -1));
        if (d == 1)
            return this.add(new Vector(1, -1));
        if (d == 2)
            return this.add(new Vector(1, 0));
        if (d == 3)
            return this.add(new Vector(1, 1));
        if (d == 4)
            return this.add(new Vector(0, 1));
        if (d == 5)
            return this.add(new Vector(-1, 1));
        if (d == 6)
            return this.add(new Vector(-1, 0));
        if (d == 7)
            return this.add(new Vector(-1, -1));
        return this;
    }
    /*
     * Gets the angle in degrees to o.
     */
    public float getRotationTo(Vector o) {
        float d = (float) Math.toDegrees((Math.atan2(y - o.y, -(x - o.x))));
        while (d < 0)
            d += 360;
        while (d > 360)
            d -= 360;
        return d;
    }
    public float getRotation() {
        return getRotationTo(new Vector(0, 0));
    }
    /*
     * In degrees
     */
    public Vector rotate(double n) {
        n = Math.toRadians(n);
        float rx = (float) ((this.x * Math.cos(n)) - (this.y * Math.sin(n)));
        float ry = (float) ((this.x * Math.sin(n)) + (this.y * Math.cos(n)));
        return new Vector(rx, ry);
    }

    public int hashCode() {
        int xx = (int) x ^ (int)(x * Integer.MAX_VALUE);
        int yy = (int) y ^ (int)(y * Integer.MAX_VALUE);
        return new Random(12665 * xx).nextInt() ^ new Random(5349 * yy).nextInt() + new Random((30513 * xx) ^ (19972 * yy)).nextInt();
    }

    public boolean isPositive() {
        return x >= 0 && y >= 0;
    }

    public Vector clone() {
        return new Vector(x, y);
    }
}

Но я не хочу компилировать кучу классов Java!

Вот файл JAR, который вы можете запустить, чтобы сгенерировать эти изображения самостоятельно. Запустите как java -jar Soil.jar number, где numberнаходится семя (может быть что угодно до 2 31 -1), или запустите как java -jar Soil.jar, и он сам выбирает семя. Там будет некоторый отладочный вывод.

Loovjo
источник
По некоторым причинам я нахожу эти изображения довольно реалистичными, а также полностью поддельными. Отсутствие естественных теней сбивает меня с толку.
Fatalize
Если это поможет, вы можете загружать полноразмерные изображения и делать их небольшими миниатюрами, как в контрольном выпуске, или средними изображениями, размер которых составляет 2, чтобы занимать меньше вертикального пространства. В источнике задания вы можете увидеть, как добавление «s» в адрес imgur делает изображения маленькими, и вы также можете использовать «m» для среднего. Источник также показывает, как превратить маленькое изображение в ссылку на полноразмерное изображение.
Трихоплакс
2
Я думаю, что цвета могут быть намного ближе - больше серого, меньше бежевого. Но в остальном хороший ответ!
Увлечения Кэлвина
12

Python 3 (с использованием библиотеки Kivy и GLSL)

Первое сгенерированное изображение

введите описание изображения здесь

Код Python:

import os
os.environ['KIVY_NO_ARGS'] = '1'

from kivy.config import Config
Config.set('input','mouse','mouse,disable_multitouch')
Config.set('graphics', 'width', '500')
Config.set('graphics', 'height', '500')
Config.set('graphics', 'resizable', '0')
Config.set('graphics', 'borderless', '1')
Config.set('graphics', 'fbo', 'force-hardware')

from kivy.app import App
from kivy.graphics import RenderContext, Fbo, Color, Rectangle
from kivy.clock import Clock
from kivy.uix.floatlayout import FloatLayout
from kivy.factory import Factory
from kivy.core.window import Window

class ShaderSurface(FloatLayout):
    seed = 0.

    def __init__(self, **kwargs):
        self.canvas = RenderContext(use_parent_projection=True, use_parent_modelview=True)
        with self.canvas:
            self.fbo = Fbo(size=Window.size, use_parent_projection=True)

        with self.fbo:
            Color(0,0,0)
            Rectangle(size=Window.size)

        self.texture = self.fbo.texture

        super(ShaderSurface, self).__init__(**kwargs)
        self.keyboard = Window.request_keyboard(self.keyboard_closed, self)
        self.keyboard.bind(on_key_down=self.on_key_down)
        Clock.schedule_once(self.update_shader,-1)

    def keyboard_closed(self):
        self.keyboard.unbind(on_key_down=self.on_key_down)
        self.keyboard = None

    def update_shader(self, dt=0.):
        self.canvas['resolution'] = list(map(float, self.size))
        self.canvas['seed'] = self.seed
        self.canvas.ask_update()

    def on_key_down(self, keyboard, keycode, text, modifiers):
        if keycode[1] == 'spacebar':
            self.seed += 1.
            self.update_shader()
            Window.screenshot()

Factory.register('ShaderSurface', cls=ShaderSurface)

class RendererApp(App):
    def build(self):
        self.root.canvas.shader.source = 'cracks_sub.glsl'

if __name__ == '__main__':
    RendererApp().run()

Файл KV:

#:kivy 1.9

ShaderSurface:
    canvas:
        Color:
            rgb: 1, 1, 1
        Rectangle:
            size: self.size
            pos: self.pos
            texture: root.fbo.texture

Код GLSL:

---VERTEX---
uniform vec2        resolution;
in vec2             vPosition;

void main()
{
    gl_Position = vec4(vPosition.xy-resolution/2., 0, 1);
}
---FRAGMENT---
#version 330
precision highp float;

out vec4 frag_color;

uniform vec2 resolution;
uniform float seed;

vec2 tr(vec2 p)
{
    p /= resolution.xy;
    p = -1.0+2.0*p;
    p.y *= resolution.y/resolution.x;
    return p;
}

float hash( float n ){
    return fract(sin(n)*43758.5453);
}

float noise( vec2 uv ){
    vec3 x = vec3(uv, 0);

    vec3 p = floor(x);
    vec3 f = fract(x);

    f       = f*f*(3.0-2.0*f);
    float n = p.x + p.y*57.0 + 113.0*p.z;

    return mix(mix(mix( hash(n+0.0), hash(n+1.0),f.x),
                   mix( hash(n+57.0), hash(n+58.0),f.x),f.y),
               mix(mix( hash(n+113.0), hash(n+114.0),f.x),
                   mix( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);
}

mat2 m = mat2(0.8,0.6,-0.6,0.8);

float fbm(vec2 p)
{
    float f = 0.0;
    f += 0.5000*noise( p ); p*=m*2.02;
    f += 0.2500*noise( p ); p*=m*2.03;
    f += 0.1250*noise( p ); p*=m*2.01;
    f += 0.0625*noise( p );
    f /= 0.9375;
    return f;
}

vec2 hash2( vec2 p )
{
    return fract(sin(vec2(dot(p,vec2(127.1,311.7)),dot(p,vec2(269.5,183.3))))*43758.5453);
}

float voronoi(vec2 x, out vec2 rt)
{
    vec2 p = floor(x);
    vec2 f = fract(x);

    vec2 mb, mr;

    float res = 8.0;
    for( int j=-1; j<=1; j++)
    for( int i=-1; i<=1; i++)
    {
        vec2 b = vec2(float(i),float(j));
        vec2 r = b+hash2(p+b)-f;
        float d = dot(r,r);

        if( d<res )
        {
            res = d;
            mr = r;
            mb = b;
            rt=r;
        }
    }


    res = 8.0;
    for( int j=-2; j<=2; j++ )
    for( int i=-2; i<=2; i++ )
    {
        vec2 b = mb + vec2(float(i),float(j));
        vec2 r = b + hash2(p+b)-f;
        float d = dot((res*res)*(mr+r),normalize(r-mr));

        res = min(res,d);
    }


    return res;
}

float crack(vec2 p)
{
    float g = mod(seed,65536./4.);
    p.x+=g;
    p.y-=seed-g;
    p.y*=1.3;
    p.x+=noise(p*4.)*.08;
    float k = 0.;
    vec2 rb = vec2(.0);
    k=voronoi(p*2.,rb);
    k=smoothstep(.0,.3,k*.05);
    float v = 0.;
    v=voronoi(rb*4.,rb);
    v=smoothstep(.0,.5,v*.05);
    k*=v;
    k-=fbm(p*128.)*.3;
    return k;
}

void main( void )
{
    vec2 fc = gl_FragCoord.xy;
    vec2 p = tr(fc);
    vec3 col = vec3(.39,.37,.25);

    vec3 abb = vec3(.14,.12,.10)/5.;

    p*=(1.+length(p)*.1);

    col.r*=crack(vec2(p.x+abb.x,p.y));
    col.g*=crack(vec2(p.x+abb.y,p.y));
    col.b*=crack(vec2(p.x+abb.z,p.y));

    col*=smoothstep(4.,1.2,dot(p,p));
    col*=exp(.66);

    //col=vec3(crack(p));
    frag_color = vec4(col,1.);
}

Функция voronoi в коде GLSL взята из ñigo Quílez. Каждый расчет, связанный с вороной, происходит во фрагментном шейдере полностью с некоторыми процедурными шумовыми функциями, чтобы создать спеклы и немного нарушить линии паттерна вороной.

При нажатии пробела семя будет увеличено на 1, и новое изображение будет сгенерировано и сохранено в виде .pngфайла.

Обновление: добавлено искажение линзы, виньетирование и хроматическая аберрация, чтобы сделать его более реалистичным. Добавлен суб-вороной шаблон.

Габор Фекете
источник
Может ли это также принять семя в качестве входных данных?
Трихоплакс
Класс ShaderSurface имеет член класса seed. Это будет передано в шейдер как единая переменная с плавающей точкой. В функции трещины шейдера семя используется для перевода точки на значение семени.
Габор Фекете
1

Джава

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;
import java.util.Scanner;

import javax.imageio.ImageIO;

public class CrackedSoil {
    static BufferedImage b;
    static Random rand;
    public static int distance(int col1,int col2){
        Color a=new Color(col1);
        Color b=new Color(col2);
        return (int)(Math.pow(a.getRed()-b.getRed(), 2)+Math.pow(a.getGreen()-b.getGreen(), 2)+Math.pow(a.getBlue()-b.getBlue(), 2));
    }
    public static void edge(){
        boolean[][] edges=new boolean[500][500];
        int threshold=125+rand.nextInt(55);
        for(int x=1;x<499;x++){
            for(int y=1;y<499;y++){
                int rgb=b.getRGB(x, y);
                int del=0;
                for(int i=-1;i<=1;i++){
                    for(int j=-1;i<=j;i++){
                        del+=distance(rgb,b.getRGB(x+i, y+j));
                    }
                }
                edges[x][y]=del>threshold;
            }
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                if(edges[x][y])b.setRGB(x, y,new Color(4+rand.nextInt(4),4+rand.nextInt(4),4+rand.nextInt(4)).getRGB());
            }
        }
    }
    public static void main(String[]arg) throws IOException{
        b=new BufferedImage(500,500,BufferedImage.TYPE_INT_RGB);
        Scanner scanner=new Scanner(System.in);
        rand=new Random(scanner.nextInt());
        int numPoints=10+rand.nextInt(15);
        Color[]c=new Color[numPoints];
        int[][]ints=new int[numPoints][2];
        int[]weights=new int[numPoints];
        for(int i=0;i<numPoints;i++){
            switch(i%4){
            case 0:ints[i]=new int[]{251+rand.nextInt(240),7+rand.nextInt(240)};break;
            case 1:ints[i]=new int[]{7+rand.nextInt(240),7+rand.nextInt(240)};break;
            case 2:ints[i]=new int[]{7+rand.nextInt(240),251+rand.nextInt(240)};break;
            case 3:ints[i]=new int[]{251+rand.nextInt(240),251+rand.nextInt(240)};break;
            }

            c[i]=new Color(40+rand.nextInt(200),40+rand.nextInt(200),40+rand.nextInt(200));
            weights[i]=50+rand.nextInt(15);
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                double d=999999;
                Color col=Color.BLACK;
                for(int i=0;i<numPoints;i++){
                    double d2=weights[i]*Math.sqrt((x-ints[i][0])*(x-ints[i][0])+(y-ints[i][1])*(y-ints[i][1]));
                    if(d2<d){
                        d=d2;
                        col=c[i];
                    }
                }
                b.setRGB(x, y,col.getRGB());
            }
        }
        //ImageIO.write(b,"png",new File("voronoi1.png"));
        for(int i=0;i<numPoints/3;i++){
            ints[i]=new int[]{7+rand.nextInt(490),7+rand.nextInt(490)};
            c[i]=new Color(40+rand.nextInt(200),40+rand.nextInt(200),40+rand.nextInt(200));
            weights[i]=50+rand.nextInt(5);
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                double d=999999;
                Color col=Color.BLACK;
                for(int i=0;i<numPoints/3;i++){
                    double d2=weights[i]*Math.sqrt((x-ints[i][0])*(x-ints[i][0])+(y-ints[i][1])*(y-ints[i][1]));
                    if(d2<d){
                        d=d2;
                        col=c[i];
                    }
                }
                Color col3=new Color(b.getRGB(x, y));
                b.setRGB(x, y,new Color((col3.getRed()+col.getRed()*3)/4,(col3.getGreen()+col.getGreen()*3)/4,(col3.getBlue()+col.getBlue()*3)/4).getRGB());
            }
        }
        //ImageIO.write(b,"png",new File("voronoi2.png"));
        for(int i=2+rand.nextInt(3);i>0;i--)edge();
        //ImageIO.write(b,"png",new File("voronoi_edge.png"));
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                Color col=new Color(b.getRGB(x, y));
                if(col.getRed()+col.getBlue()+col.getGreen()>50){
                    if(rand.nextDouble()<0.95){
                        b.setRGB(x, y,new Color(150+rand.nextInt(9),145+rand.nextInt(9),135+rand.nextInt(9)).getRGB());
                    }else{
                        b.setRGB(x, y,new Color(120+col.getRed()/7+rand.nextInt(12),115+col.getGreen()/7+rand.nextInt(12),105+col.getBlue()/7+rand.nextInt(12)).getRGB());
                    }
                }
            }
        }
        ImageIO.write(b,"png",new File("soil.png"));
    }
}

Создает композицию из двух случайных диаграмм, которая затем проходит простое обнаружение границ и, наконец, преобразуется в конечный результат.

Некоторые выводы:

введите описание изображения здесь

введите описание изображения здесь

введите описание изображения здесь

Некоторые из промежуточных шагов для этого последнего:

введите описание изображения здесь

(Первая диаграмма вороной)

введите описание изображения здесь

(Композит из двух диаграмм вороной)

введите описание изображения здесь

(После шага определения края, но до окончательного перекрашивания)

SuperJedi224
источник