Рефлексивный эволюционный алгоритм

10

Вы должны написать программу, реализующую функцию digitsum(int i). Программа должна изменить свой собственный код (для языков, где это невозможно с помощью рефлексии , пожалуйста, будьте изобретательны), чтобы достичь цели.

Вы начинаете с

function digitsum(int i){
    return i;
}

и реализовать эволюционный алгоритм, который будет модифицировать вышеупомянутую функцию, пока он не вернет действительные цифры при вызове функции.

Поскольку это конкурс популярности, у вас очень много свободных рук, пожалуйста, будьте креативны!

Методические рекомендации:

  • Начните с определенной функции (перевод на ваш язык, конечно).
  • Распечатайте хотя бы самую подходящую функцию каждого поколения.
  • Распечатайте ваш рабочий раствор, проверенный на 0 <i <10000.
  • Будь креативным!

Не делайте:

  • Подсказка вашей программы к решению, пожалуйста, используйте все варианты языка!
  • Кидай ошибки в консоль.
  • Используйте любой внешний вход. Вы можете писать и сохранять в файлы, созданные вашей программой. Без интернета.

Действительное решение с наибольшим количеством голосов выигрывает!

reggaemuffin
источник
Имеет ли no librariesразрешено в виду не Libc?
Мниип
я удалил, no librariesкак это было бы для сложной ИМО, так что избиратели могут решить, если есть много библиотек, используемых!
Reggaemuffin
7
+1 Сложный интересный вопрос. Потребуется несколько часов, чтобы дать ответ. К сожалению, не ожидайте получить больше, чем скажем 2 или 3 ответа.
Виктор Стафуса
Чудеса В чем разница между этой и рекурсивной функцией? Я не могу понять это, поскольку я не могу визуализировать сценарий, чувствующий себя отсталым xD
Teun Pronk
1
"Пожалуйста, используйте все варианты языка!" Похоже, это явный запрос на риск программы, удаляющей важные файлы.
Питер Тейлор

Ответы:

3

C #

Почти полностью случайное и необработанное решение для сборки. Что касается C # и практически любой другой платформы, это настолько низкий уровень, насколько это возможно. К счастью, C # позволяет вам определять методы во время выполнения в IL (IL - это промежуточный язык, байт-код .NET, похожий на ассемблер). Единственным ограничением этого кода является то, что я выбрал несколько кодов операций (из сотен) с произвольным распределением, которые были бы необходимы для идеального решения. Если мы разрешим все коды операций, шансы работающей программы невелики, так что это необходимо (как вы можете себе представить, есть много разных способов, которые могут привести к сбою инструкций случайной сборки, но, к счастью, они не разрушают всю программу в .NET). Помимо диапазона возможных кодов операций, это абсолютно случайные коды операций IL без намека на подсказки.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Reflection.Emit;
using System.Diagnostics;
using System.Threading;

namespace codegolf
{
    class Program
    {
        // decompile this into IL to find out the opcodes needed for the perfect algo
        static int digitsumbest(int i)
        {
            var ret = 0;
            while (i > 0)
            {
                ret += i % 10;
                i /= 10;
            }
            return ret;
        }

        delegate int digitsumdelegate(int num);

        static Thread bgthread;

        // actually runs the generated code for one index
        // it is invoked in a background thread, which we save so that it can be aborted in case of an infinite loop
        static int run(digitsumdelegate del, int num)
        {
            bgthread = Thread.CurrentThread;
            try
            {
                return del(num);
            }
            catch (ThreadAbortException)
            {
                bgthread = null;
                throw;
            }
        }

        // evaluates a generated code for some inputs and calculates an error level
        // also supports a full run with logging
        static long evaluate(digitsumdelegate del, TextWriter sw)
        {
            var error = 0L;

            List<int> numbers;
            if (sw == null) // quick evaluation
                numbers = Enumerable.Range(1, 30).Concat(Enumerable.Range(1, 70).Select(x => 5000 + x * 31)).ToList();
            else // full run
                numbers = Enumerable.Range(1, 9999).ToList();

            foreach (var num in numbers)
            {
                try
                {
                    Func<digitsumdelegate, int, int> f = run;
                    bgthread = null;
                    var iar = f.BeginInvoke(del, num, null, null);
                    if (!iar.AsyncWaitHandle.WaitOne(10))
                    {
                        bgthread.Abort();
                        while (bgthread != null) ;
                        throw new Exception("timeout");
                    }
                    var result = f.EndInvoke(iar);
                    if (sw != null)
                        sw.WriteLine("{0};{1};{2};", num, digitsumbest(num), result);
                    var diff = result == 0 ? 15 : (result - digitsumbest(num));
                    if (diff > 50 || diff < -50)
                        diff = 50;
                    error += diff * diff;
                }
                catch (InvalidProgramException)
                {
                    // invalid IL code, happens a lot, so let's make a shortcut
                    if (sw != null)
                        sw.WriteLine("invalid program");
                    return numbers.Count * (50 * 50) + 1;
                }
                catch (Exception ex)
                {
                    if (sw != null)
                        sw.WriteLine("{0};{1};;{2}", num, digitsumbest(num), ex.Message);
                    error += 50 * 50;
                }
            }
            return error;
        }

        // generates code from the given byte array
        static digitsumdelegate emit(byte[] ops)
        {
            var dm = new DynamicMethod("w", typeof(int), new[] { typeof(int) });
            var ilg = dm.GetILGenerator();
            var loc = ilg.DeclareLocal(typeof(int));

            // to support jumping anywhere, we will assign a label to every single opcode
            var labels = Enumerable.Range(0, ops.Length).Select(x => ilg.DefineLabel()).ToArray();

            for (var i = 0; i < ops.Length; i++)
            {
                ilg.MarkLabel(labels[i]);

                // 3 types of jumps with 23 distribution each, 11 types of other opcodes with 17 distribution each = all 256 possibilities
                // the opcodes were chosen based on the hand-coded working solution
                var c = ops[i];
                if (c < 23)
                    ilg.Emit(OpCodes.Br_S, labels[(i + 1 + c) % labels.Length]);
                else if (c < 46)
                    ilg.Emit(OpCodes.Bgt_S, labels[(i + 1 + c - 23) % labels.Length]);
                else if (c < 69)
                    ilg.Emit(OpCodes.Bge_S, labels[(i + 1 + c - 46) % labels.Length]);
                else if (c < 86)
                    ilg.Emit(OpCodes.Ldc_I4, c - 70); // stack: +1
                else if (c < 103)
                    ilg.Emit(OpCodes.Dup); // stack: +1
                else if (c < 120)
                    ilg.Emit(OpCodes.Ldarg_0); // stack: +1
                else if (c < 137)
                    ilg.Emit(OpCodes.Starg_S, 0); // stack: -1
                else if (c < 154)
                    ilg.Emit(OpCodes.Ldloc, loc); // stack: +1
                else if (c < 171)
                    ilg.Emit(OpCodes.Stloc, loc); // stack: -1
                else if (c < 188)
                    ilg.Emit(OpCodes.Mul); // stack: -1
                else if (c < 205)
                    ilg.Emit(OpCodes.Div); // stack: -1
                else if (c < 222)
                    ilg.Emit(OpCodes.Rem); // stack: -1
                else if (c < 239)
                    ilg.Emit(OpCodes.Add); // stack: -1
                else
                    ilg.Emit(OpCodes.Sub); // stack: -1
            }

            ilg.Emit(OpCodes.Ret);
            return (digitsumdelegate)dm.CreateDelegate(typeof(digitsumdelegate));
        }

        static void Main(string[] args)
        {
            System.Diagnostics.Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.Idle;

            var rnd = new Random();

            // the first list is just 10 small random ones
            var best = new List<byte[]>();
            for (var i = 0; i < 10; i++)
            {
                var initial = new byte[5];
                for (var j = 0; j < initial.Length; j++)
                    initial[j] = (byte)rnd.Next(256);
                best.Add(initial);
            }

            // load the best result from the previous run, if it exists
            if (File.Exists("best.txt"))
                best[0] = File.ReadAllLines("best.txt").Select(x => byte.Parse(x)).ToArray();

            var stop = false;

            // handle nice stopping with ctrl-c
            Console.CancelKeyPress += (s, e) =>
            {
                stop = true;
                e.Cancel = true;
            };

            while (!stop)
            {
                var candidates = new List<byte[]>();

                // leave the 10 best arrays, plus generate 9 consecutive mutations for each of them = 100 candidates
                for (var i = 0; i < 10; i++)
                {
                    var s = best[i];
                    candidates.Add(s);
                    for (var j = 0; j < 9; j++)
                    {
                        // the optimal solution is about 20 opcodes, we keep the program length between 15 and 40
                        switch (rnd.Next(s.Length >= 40 ? 2 : 0, s.Length <= 15 ? 3 : 5))
                        {
                            case 0: // insert
                            case 1:
                                var c = new byte[s.Length + 1];
                                var idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                c[idx] = (byte)rnd.Next(256);
                                Array.Copy(s, idx, c, idx + 1, s.Length - idx);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 2: // change
                                c = (byte[])s.Clone();
                                idx = rnd.Next(0, s.Length);
                                c[idx] = (byte)rnd.Next(256);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 3: // remove
                            case 4: // remove
                                c = new byte[s.Length - 1];
                                idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                Array.Copy(s, idx + 1, c, idx, s.Length - idx - 1);
                                candidates.Add(c);
                                s = c;
                                break;
                        }
                    }
                }

                // score the candidates and select the best 10
                var scores = Enumerable.Range(0, 100).ToDictionary(i => i, i => evaluate(emit(candidates[i]), null));
                var bestidxes = scores.OrderBy(x => x.Value).Take(10).Select(x => x.Key).ToList();
                Console.WriteLine("best score so far: {0}", scores[bestidxes[0]]);
                best = bestidxes.Select(i => candidates[i]).ToList();
            }

            // output the code of the best solution
            using (var sw = new StreamWriter("best.txt"))
            {
                foreach (var b in best[0])
                    sw.WriteLine(b);
            }

            // create a CSV file with the best solution
            using (var sw = new StreamWriter("best.csv"))
            {
                sw.WriteLine("index;actual;generated;error");
                evaluate(emit(best[0]), sw);
            }
        }
    }
}

Извините, у меня пока нет результатов, потому что даже тестирование на 1..99 (вместо 1..9999) довольно медленное, и я слишком устал. Вернемся к вам завтра.

РЕДАКТИРОВАТЬ: Я закончил программу и много ее подправил. Теперь, если вы нажмете CTRL-C, он завершит текущий запуск и выведет результаты в виде файлов. В настоящее время единственные жизнеспособные решения, которые он производит, - это программы, которые всегда возвращают постоянное число. Я начинаю думать, что шансы на более продвинутую рабочую программу астрономически невелики. Во всяком случае, я буду продолжать работать некоторое время.

РЕДАКТИРОВАТЬ: Я продолжаю дорабатывать алгоритм, это идеальная игрушка для гика, как я. Однажды я видел сгенерированную программу, которая фактически выполняла некоторую случайную математику и не всегда возвращала постоянное число. Было бы здорово запустить его на нескольких миллионах процессоров одновременно :). Будет продолжать это.

РЕДАКТИРОВАТЬ: Вот результат какой-то совершенно случайной математики. Он прыгает вокруг и остается на 17 для остальных индексов. Это не станет сознательным в ближайшее время.

РЕДАКТИРОВАТЬ: это становится все сложнее. Конечно, как и следовало ожидать, он не похож на правильный алгоритм цифровой обработки, но он старается изо всех сил. Смотри, компьютерная программа сборки!

fejesjoco
источник
Выглядит очень круто! Я посмотрю ваш код завтра!
reggaemuffin
Я на самом деле пробовал подобный подход, и я также борюсь с хорошей функцией оценки. Я также застрял в локальных максимумах (застрял в решениях, которые возвращают правильный для 1..19, используя причудливые операции по модулю). В любом случае, для вас! PS: чтобы выйти из локального максимума, я постараюсь время от времени вводить радикальные мутации и позволять им развиваться (возможно, в отдельной вселенной) на некоторое время, чтобы другие не были немедленно сбиты другими ... ( вроде Южной Америки, дрейфующей из Африки и развивающей разные виды ;-)
blabla999
3

C #

Возможно, это не совсем то, что вы предполагали, но это лучшее, что я мог сделать прямо сейчас. (По крайней мере, с C # и CodeDom).

Итак, как это работает:

  1. Он вычисляет цифровую сумму 2 (база не была указана в выписке)
  2. Он пытается создать выражение с множеством похожих терминов ((i & v1) >> v2). Этими терминами будут гены, которые будут мутировать в процессе бега.
  3. Функция пригодности просто сравнивает значения с предварительно рассчитанным массивом и использует сумму абсолютных значений разностей. Это означает, что значение 0 означает, что мы пришли к решению, и чем меньше значение, тем лучше решение.

Код:

using System;
using System.CodeDom;
using System.CodeDom.Compiler;
using Microsoft.CSharp;
using System.IO;
using System.Reflection;
using System.Collections.Generic;
using System.Linq;

namespace Evol
{
    class MainClass
    {
        const int BASE = 2;
        static int[] correctValues;
        static List<Evolution> values = new List<Evolution>();

        public static CodeCompileUnit generateCompileUnit(CodeStatementCollection statements) {
            CodeCompileUnit compileUnit = new CodeCompileUnit();
            CodeNamespace samples = new CodeNamespace("CodeGolf");
            compileUnit.Namespaces.Add(samples);
            samples.Imports.Add(new CodeNamespaceImport("System"));
            CodeTypeDeclaration digitSumClass = new CodeTypeDeclaration("DigitSum");
            samples.Types.Add(digitSumClass);
            CodeMemberMethod method = new CodeMemberMethod();
            method.Name = "digitsum";
            method.Attributes = MemberAttributes.Public | MemberAttributes.Static;
            method.ReturnType = new CodeTypeReference (typeof(int));
            method.Parameters.Add (new CodeParameterDeclarationExpression (typeof(int), "i"));
            method.Statements.AddRange (statements);
            digitSumClass.Members.Add(method);
            return compileUnit;
        }

        public static long CompileAndInvoke(CodeStatementCollection statements, bool printCode) {
            CompilerParameters cp = new CompilerParameters();
            cp.ReferencedAssemblies.Add( "System.dll" );
            cp.GenerateInMemory = true;
            CodeGeneratorOptions cgo = new CodeGeneratorOptions ();
            CodeDomProvider cpd = new CSharpCodeProvider ();
            CodeCompileUnit cu = generateCompileUnit (statements);
            StringWriter sw = new StringWriter();
            cpd.GenerateCodeFromCompileUnit(cu, sw, cgo);
            if (printCode) {
                System.Console.WriteLine (sw.ToString ());
            }

            var result = cpd.CompileAssemblyFromDom (cp, cu);

            if (result.Errors.Count != 0) {
                return -1;
            } else {
                var assembly = result.CompiledAssembly;
                var type = assembly.GetType ("CodeGolf.DigitSum");
                var method = type.GetMethod ("digitsum");
                long fitness = CalcFitness (method);
                return fitness;
            }
        }

        public static long CalcFitness(MethodInfo method) {
            long result = 0;
            for (int i = 0; i < correctValues.Length; i++) {
                int r = (int)method.Invoke (null, new Object[] { i });
                result += Math.Abs (r - correctValues[i]);
            }
            return result;
        }

        public static CodeStatementCollection generateCodeDomFromString (Term[] terms) {
            CodeStatementCollection statements = new CodeStatementCollection ();
            CodeExpression expression = null;
            foreach (Term term in terms) {
                CodeExpression inner = new CodeArgumentReferenceExpression ("i");
                if (term.and.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.BitwiseAnd, new CodePrimitiveExpression(term.and.Value));
                }
                if (term.shift.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.Divide, new CodePrimitiveExpression(Math.Pow (2, term.shift.Value)));
                }
                if (expression == null) {
                    expression = inner;
                } else {
                    expression = new CodeBinaryOperatorExpression (expression, CodeBinaryOperatorType.Add, inner);
                }
            }
            statements.Add (new CodeMethodReturnStatement (expression));
            return statements;
        }


        public static void Main (string[] args)
        {
            correctValues = new int[10001];
            for (int i = 0; i < correctValues.Length; i++) {
                int result = 0;
                int num = i;
                while (num != 0) {
                    result += num % BASE;
                    num /= BASE;
                }
                correctValues [i] = result;
            }
            values.Add (new Evolution (new Term[] { new Term (null, null) }));
            Random rnd = new Random ();
            while (true) {
                // run old generation
                foreach (var val in values) {
                    CodeStatementCollection stat = generateCodeDomFromString (val.term);
                    long fitness = CompileAndInvoke (stat, false);
                    val.score = fitness;
                    System.Console.WriteLine ("Fitness: {0}", fitness);
                }
                Evolution best = values.Aggregate ((i1, i2) => i1.score < i2.score ? i1 : i2);
                CodeStatementCollection bestcoll = generateCodeDomFromString (best.term);
                CompileAndInvoke (bestcoll, true);
                System.Console.WriteLine ("Best fitness for this run: {0}", best.score);

                if (best.score == 0)
                    break;

                // generate new generation
                List<Evolution> top = values.OrderBy (i => i.score).Take (3).ToList();
                values = new List<Evolution> ();
                foreach (var e in top) {
                    values.Add (e);
                    if (e.term.Length < 16) {
                        Term[] newTerm = new Term[e.term.Length + 1];
                        for (int i = 0; i < e.term.Length; i++) {
                            newTerm [i] = e.term [i];
                        }
                        int rrr = rnd.Next (0, 17);
                        newTerm [e.term.Length] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                    {
                        int r = rnd.Next (0, e.term.Length);
                        Term[] newTerm = (Term[])e.term.Clone ();
                        int rrr = rnd.Next (0, 17);
                        newTerm [r] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                }
            }
        }

        public struct Term {
            public int? and;
            public int? shift;

            public Term(int? and, int? shift) {
                if (and!=0) {
                    this.and = and;
                } else this.and = null;
                if (shift!=0) {
                    this.shift = shift;
                } else this.shift=null;
            }
        }

        public class Evolution {
            public Term[] term;
            public long score;

            public Evolution(Term[] term) {
                this.term = term;
            }
        }
    }
}

Протестировано на OSX с компилятором Mono C # версии 3.2.6.0.

На каждой итерации выводится значение пригодности текущего расчета. В конце он напечатает лучшее решение вместе со своей пригодностью. Цикл будет работать до тех пор, пока один из результатов не будет иметь значение пригодности 0.

Вот как это начинается:

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return i;
        }
    }
}

Best fitness for this run: 49940387

И через некоторое время (занимает около 30 минут), вот как все это заканчивается (показывая последнюю и почти последнюю итерацию):

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return ((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 128) / 128)) + ((i & 65536) / 65536)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048));
        }
    }
}

Best fitness for this run: 4992
Fitness: 4992
Fitness: 7040
Fitness: 4993
Fitness: 4992
Fitness: 0
Fitness: 4992
Fitness: 4992
Fitness: 7496
// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return (((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 64) / 64)) + ((i & 32768) / 32768)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048)) + ((i & 32768) / 32768));
        }
    }
}

Best fitness for this run: 0

Ноты:

  1. CodeDOM не поддерживает левый оператор сдвига, поэтому вместо того, чтобы a >> bиспользоватьa / 2^b
  2. Начальная итерация как раз и return i;требует задачи.
  3. На первых нескольких итерациях приоритет отдается добавлению в сумму новых терминов (генов). Позже более приоритетным является изменение значений (мутация) в терминах случайным образом.
  4. Я генерирую термины, которые выглядят, i & a >> aа не i & a >> b, так как в последнем случае эволюция была просто слишком медленной, чтобы быть практической.
  5. По этой же причине решение ограничивается поиском ответа в форме return (i&a>>b)+(i&c>>d)+..., поскольку любой другой вид (например, попытка сгенерировать «правильный» код с помощью циклов, присваиваний, проверок условий и т. Д.) Просто сходится слишком медленно. Также таким образом очень легко определить гены (каждый из терминов), и очень легко их мутировать.
  6. Это также причина, по которой я добавляю цифры в базу 2 (база не была указана в постановке задачи, поэтому я считаю, что это нормально). Основное решение 10 было бы просто замедлить, а также было бы очень сложно определить реальные гены. Добавление цикла также будет означать, что вам нужно управлять работающим кодом и найти возможный способ его уничтожения, прежде чем он попадет в потенциально бесконечный цикл.
  7. Гены только мутированы, в этом решении нет кроссовера. Я не знаю, ускорит ли это добавление процесса эволюции или нет.
  8. Решение проверяется только на числа 0..10000(если вы проверите найденное решение, вы увидите, что оно не будет работать для чисел больше 16384)
  9. Весь процесс эволюции может быть проверен в этой сути.
SztupY
источник
3

Javascript

Ну, у меня возникла проблема точности с плавающей запятой в моем ответе - которую, вероятно, можно решить с помощью библиотеки BigDecimal - когда входные числа больше чем 55.
Да, это далеко не 10000так, поэтому я не ожидаю победы, но все же интересный метод, основанный на этой теме .
Он вычисляет [полиномиальную интерполяцию] ( http://en.wikipedia.org/wiki/Polynomial_interpolation ) на основе набора точек, поэтому он использует только умножение, деление и сложение, без операций по модулю или побитовые операции.

//used to compute real values
function correct(i) {
  var s = i.toString();
  var o=0;
  for (var i=0; i<s.length; i++) {
    o+=parseInt(s[i]);
  }
  return o;
}

function digitsum(i){return i}
//can be replaced by anything like :
//function digitsum(i){return (Math.sin(i*i)+2*Math.sqrt(i)))}

for (var j=0; j<60; j++) {
  var p = correct(j+1)-digitsum(j+1);
  if (p != 0) {
    var g='Math.round(1';
    for (var k=0; k<j+1; k++) {
      g+='*((i-'+k+')/'+(j+1-k)+')';
    }
    g+=')';
    eval(digitsum.toString().replace(/{return (.*)}/, function (m,v) {
      return "{return "+v+"+"+p+"*"+g+"}";
    }));
  }
}

console.log(digitsum);

Функция выхода:

function digitsum(i){return i+-9*Math.round(1*((i-0)/10)*((i-1)/9)*((i-2)/8)*((i-3)/7)*((i-4)/6)*((i-5)/5)*((i-6)/4)*((i-7)/3)*((i-8)/2)*((i-9)/1))+90*Math.round(1*((i-0)/11)*((i-1)/10)*((i-2)/9)*((i-3)/8)*((i-4)/7)*((i-5)/6)*((i-6)/5)*((i-7)/4)*((i-8)/3)*((i-9)/2)*((i-10)/1))+-495*Math.round(1*((i-0)/12)*((i-1)/11)*((i-2)/10)*((i-3)/9)*((i-4)/8)*((i-5)/7)*((i-6)/6)*((i-7)/5)*((i-8)/4)*((i-9)/3)*((i-10)/2)*((i-11)/1))+1980*Math.round(1*((i-0)/13)*((i-1)/12)*((i-2)/11)*((i-3)/10)*((i-4)/9)*((i-5)/8)*((i-6)/7)*((i-7)/6)*((i-8)/5)*((i-9)/4)*((i-10)/3)*((i-11)/2)*((i-12)/1))+-6435*Math.round(1*((i-0)/14)*((i-1)/13)*((i-2)/12)*((i-3)/11)*((i-4)/10)*((i-5)/9)*((i-6)/8)*((i-7)/7)*((i-8)/6)*((i-9)/5)*((i-10)/4)*((i-11)/3)*((i-12)/2)*((i-13)/1))+18018*Math.round(1*((i-0)/15)*((i-1)/14)*((i-2)/13)*((i-3)/12)*((i-4)/11)*((i-5)/10)*((i-6)/9)*((i-7)/8)*((i-8)/7)*((i-9)/6)*((i-10)/5)*((i-11)/4)*((i-12)/3)*((i-13)/2)*((i-14)/1))+-45045*Math.round(1*((i-0)/16)*((i-1)/15)*((i-2)/14)*((i-3)/13)*((i-4)/12)*((i-5)/11)*((i-6)/10)*((i-7)/9)*((i-8)/8)*((i-9)/7)*((i-10)/6)*((i-11)/5)*((i-12)/4)*((i-13)/3)*((i-14)/2)*((i-15)/1))+102960*Math.round(1*((i-0)/17)*((i-1)/16)*((i-2)/15)*((i-3)/14)*((i-4)/13)*((i-5)/12)*((i-6)/11)*((i-7)/10)*((i-8)/9)*((i-9)/8)*((i-10)/7)*((i-11)/6)*((i-12)/5)*((i-13)/4)*((i-14)/3)*((i-15)/2)*((i-16)/1))+-218790*Math.round(1*((i-0)/18)*((i-1)/17)*((i-2)/16)*((i-3)/15)*((i-4)/14)*((i-5)/13)*((i-6)/12)*((i-7)/11)*((i-8)/10)*((i-9)/9)*((i-10)/8)*((i-11)/7)*((i-12)/6)*((i-13)/5)*((i-14)/4)*((i-15)/3)*((i-16)/2)*((i-17)/1))+437580*Math.round(1*((i-0)/19)*((i-1)/18)*((i-2)/17)*((i-3)/16)*((i-4)/15)*((i-5)/14)*((i-6)/13)*((i-7)/12)*((i-8)/11)*((i-9)/10)*((i-10)/9)*((i-11)/8)*((i-12)/7)*((i-13)/6)*((i-14)/5)*((i-15)/4)*((i-16)/3)*((i-17)/2)*((i-18)/1))+-831411*Math.round(1*((i-0)/20)*((i-1)/19)*((i-2)/18)*((i-3)/17)*((i-4)/16)*((i-5)/15)*((i-6)/14)*((i-7)/13)*((i-8)/12)*((i-9)/11)*((i-10)/10)*((i-11)/9)*((i-12)/8)*((i-13)/7)*((i-14)/6)*((i-15)/5)*((i-16)/4)*((i-17)/3)*((i-18)/2)*((i-19)/1))+1511820*Math.round(1*((i-0)/21)*((i-1)/20)*((i-2)/19)*((i-3)/18)*((i-4)/17)*((i-5)/16)*((i-6)/15)*((i-7)/14)*((i-8)/13)*((i-9)/12)*((i-10)/11)*((i-11)/10)*((i-12)/9)*((i-13)/8)*((i-14)/7)*((i-15)/6)*((i-16)/5)*((i-17)/4)*((i-18)/3)*((i-19)/2)*((i-20)/1))+-2647260*Math.round(1*((i-0)/22)*((i-1)/21)*((i-2)/20)*((i-3)/19)*((i-4)/18)*((i-5)/17)*((i-6)/16)*((i-7)/15)*((i-8)/14)*((i-9)/13)*((i-10)/12)*((i-11)/11)*((i-12)/10)*((i-13)/9)*((i-14)/8)*((i-15)/7)*((i-16)/6)*((i-17)/5)*((i-18)/4)*((i-19)/3)*((i-20)/2)*((i-21)/1))+4490640*Math.round(1*((i-0)/23)*((i-1)/22)*((i-2)/21)*((i-3)/20)*((i-4)/19)*((i-5)/18)*((i-6)/17)*((i-7)/16)*((i-8)/15)*((i-9)/14)*((i-10)/13)*((i-11)/12)*((i-12)/11)*((i-13)/10)*((i-14)/9)*((i-15)/8)*((i-16)/7)*((i-17)/6)*((i-18)/5)*((i-19)/4)*((i-20)/3)*((i-21)/2)*((i-22)/1))+-7434405*Math.round(1*((i-0)/24)*((i-1)/23)*((i-2)/22)*((i-3)/21)*((i-4)/20)*((i-5)/19)*((i-6)/18)*((i-7)/17)*((i-8)/16)*((i-9)/15)*((i-10)/14)*((i-11)/13)*((i-12)/12)*((i-13)/11)*((i-14)/10)*((i-15)/9)*((i-16)/8)*((i-17)/7)*((i-18)/6)*((i-19)/5)*((i-20)/4)*((i-21)/3)*((i-22)/2)*((i-23)/1))+12150072*Math.round(1*((i-0)/25)*((i-1)/24)*((i-2)/23)*((i-3)/22)*((i-4)/21)*((i-5)/20)*((i-6)/19)*((i-7)/18)*((i-8)/17)*((i-9)/16)*((i-10)/15)*((i-11)/14)*((i-12)/13)*((i-13)/12)*((i-14)/11)*((i-15)/10)*((i-16)/9)*((i-17)/8)*((i-18)/7)*((i-19)/6)*((i-20)/5)*((i-21)/4)*((i-22)/3)*((i-23)/2)*((i-24)/1))+-19980675*Math.round(1*((i-0)/26)*((i-1)/25)*((i-2)/24)*((i-3)/23)*((i-4)/22)*((i-5)/21)*((i-6)/20)*((i-7)/19)*((i-8)/18)*((i-9)/17)*((i-10)/16)*((i-11)/15)*((i-12)/14)*((i-13)/13)*((i-14)/12)*((i-15)/11)*((i-16)/10)*((i-17)/9)*((i-18)/8)*((i-19)/7)*((i-20)/6)*((i-21)/5)*((i-22)/4)*((i-23)/3)*((i-24)/2)*((i-25)/1))+34041150*Math.round(1*((i-0)/27)*((i-1)/26)*((i-2)/25)*((i-3)/24)*((i-4)/23)*((i-5)/22)*((i-6)/21)*((i-7)/20)*((i-8)/19)*((i-9)/18)*((i-10)/17)*((i-11)/16)*((i-12)/15)*((i-13)/14)*((i-14)/13)*((i-15)/12)*((i-16)/11)*((i-17)/10)*((i-18)/9)*((i-19)/8)*((i-20)/7)*((i-21)/6)*((i-22)/5)*((i-23)/4)*((i-24)/3)*((i-25)/2)*((i-26)/1))+-62162100*Math.round(1*((i-0)/28)*((i-1)/27)*((i-2)/26)*((i-3)/25)*((i-4)/24)*((i-5)/23)*((i-6)/22)*((i-7)/21)*((i-8)/20)*((i-9)/19)*((i-10)/18)*((i-11)/17)*((i-12)/16)*((i-13)/15)*((i-14)/14)*((i-15)/13)*((i-16)/12)*((i-17)/11)*((i-18)/10)*((i-19)/9)*((i-20)/8)*((i-21)/7)*((i-22)/6)*((i-23)/5)*((i-24)/4)*((i-25)/3)*((i-26)/2)*((i-27)/1))+124324200*Math.round(1*((i-0)/29)*((i-1)/28)*((i-2)/27)*((i-3)/26)*((i-4)/25)*((i-5)/24)*((i-6)/23)*((i-7)/22)*((i-8)/21)*((i-9)/20)*((i-10)/19)*((i-11)/18)*((i-12)/17)*((i-13)/16)*((i-14)/15)*((i-15)/14)*((i-16)/13)*((i-17)/12)*((i-18)/11)*((i-19)/10)*((i-20)/9)*((i-21)/8)*((i-22)/7)*((i-23)/6)*((i-24)/5)*((i-25)/4)*((i-26)/3)*((i-27)/2)*((i-28)/1))+-270405144*Math.round(1*((i-0)/30)*((i-1)/29)*((i-2)/28)*((i-3)/27)*((i-4)/26)*((i-5)/25)*((i-6)/24)*((i-7)/23)*((i-8)/22)*((i-9)/21)*((i-10)/20)*((i-11)/19)*((i-12)/18)*((i-13)/17)*((i-14)/16)*((i-15)/15)*((i-16)/14)*((i-17)/13)*((i-18)/12)*((i-19)/11)*((i-20)/10)*((i-21)/9)*((i-22)/8)*((i-23)/7)*((i-24)/6)*((i-25)/5)*((i-26)/4)*((i-27)/3)*((i-28)/2)*((i-29)/1))+620410320*Math.round(1*((i-0)/31)*((i-1)/30)*((i-2)/29)*((i-3)/28)*((i-4)/27)*((i-5)/26)*((i-6)/25)*((i-7)/24)*((i-8)/23)*((i-9)/22)*((i-10)/21)*((i-11)/20)*((i-12)/19)*((i-13)/18)*((i-14)/17)*((i-15)/16)*((i-16)/15)*((i-17)/14)*((i-18)/13)*((i-19)/12)*((i-20)/11)*((i-21)/10)*((i-22)/9)*((i-23)/8)*((i-24)/7)*((i-25)/6)*((i-26)/5)*((i-27)/4)*((i-28)/3)*((i-29)/2)*((i-30)/1))+-1451529585*Math.round(1*((i-0)/32)*((i-1)/31)*((i-2)/30)*((i-3)/29)*((i-4)/28)*((i-5)/27)*((i-6)/26)*((i-7)/25)*((i-8)/24)*((i-9)/23)*((i-10)/22)*((i-11)/21)*((i-12)/20)*((i-13)/19)*((i-14)/18)*((i-15)/17)*((i-16)/16)*((i-17)/15)*((i-18)/14)*((i-19)/13)*((i-20)/12)*((i-21)/11)*((i-22)/10)*((i-23)/9)*((i-24)/8)*((i-25)/7)*((i-26)/6)*((i-27)/5)*((i-28)/4)*((i-29)/3)*((i-30)/2)*((i-31)/1))+3378846240*Math.round(1*((i-0)/33)*((i-1)/32)*((i-2)/31)*((i-3)/30)*((i-4)/29)*((i-5)/28)*((i-6)/27)*((i-7)/26)*((i-8)/25)*((i-9)/24)*((i-10)/23)*((i-11)/22)*((i-12)/21)*((i-13)/20)*((i-14)/19)*((i-15)/18)*((i-16)/17)*((i-17)/16)*((i-18)/15)*((i-19)/14)*((i-20)/13)*((i-21)/12)*((i-22)/11)*((i-23)/10)*((i-24)/9)*((i-25)/8)*((i-26)/7)*((i-27)/6)*((i-28)/5)*((i-29)/4)*((i-30)/3)*((i-31)/2)*((i-32)/1))+-7716754980*Math.round(1*((i-0)/34)*((i-1)/33)*((i-2)/32)*((i-3)/31)*((i-4)/30)*((i-5)/29)*((i-6)/28)*((i-7)/27)*((i-8)/26)*((i-9)/25)*((i-10)/24)*((i-11)/23)*((i-12)/22)*((i-13)/21)*((i-14)/20)*((i-15)/19)*((i-16)/18)*((i-17)/17)*((i-18)/16)*((i-19)/15)*((i-20)/14)*((i-21)/13)*((i-22)/12)*((i-23)/11)*((i-24)/10)*((i-25)/9)*((i-26)/8)*((i-27)/7)*((i-28)/6)*((i-29)/5)*((i-30)/4)*((i-31)/3)*((i-32)/2)*((i-33)/1))+17178273288*Math.round(1*((i-0)/35)*((i-1)/34)*((i-2)/33)*((i-3)/32)*((i-4)/31)*((i-5)/30)*((i-6)/29)*((i-7)/28)*((i-8)/27)*((i-9)/26)*((i-10)/25)*((i-11)/24)*((i-12)/23)*((i-13)/22)*((i-14)/21)*((i-15)/20)*((i-16)/19)*((i-17)/18)*((i-18)/17)*((i-19)/16)*((i-20)/15)*((i-21)/14)*((i-22)/13)*((i-23)/12)*((i-24)/11)*((i-25)/10)*((i-26)/9)*((i-27)/8)*((i-28)/7)*((i-29)/6)*((i-30)/5)*((i-31)/4)*((i-32)/3)*((i-33)/2)*((i-34)/1))+-37189436130*Math.round(1*((i-0)/36)*((i-1)/35)*((i-2)/34)*((i-3)/33)*((i-4)/32)*((i-5)/31)*((i-6)/30)*((i-7)/29)*((i-8)/28)*((i-9)/27)*((i-10)/26)*((i-11)/25)*((i-12)/24)*((i-13)/23)*((i-14)/22)*((i-15)/21)*((i-16)/20)*((i-17)/19)*((i-18)/18)*((i-19)/17)*((i-20)/16)*((i-21)/15)*((i-22)/14)*((i-23)/13)*((i-24)/12)*((i-25)/11)*((i-26)/10)*((i-27)/9)*((i-28)/8)*((i-29)/7)*((i-30)/6)*((i-31)/5)*((i-32)/4)*((i-33)/3)*((i-34)/2)*((i-35)/1))+78299888041*Math.round(1*((i-0)/37)*((i-1)/36)*((i-2)/35)*((i-3)/34)*((i-4)/33)*((i-5)/32)*((i-6)/31)*((i-7)/30)*((i-8)/29)*((i-9)/28)*((i-10)/27)*((i-11)/26)*((i-12)/25)*((i-13)/24)*((i-14)/23)*((i-15)/22)*((i-16)/21)*((i-17)/20)*((i-18)/19)*((i-19)/18)*((i-20)/17)*((i-21)/16)*((i-22)/15)*((i-23)/14)*((i-24)/13)*((i-25)/12)*((i-26)/11)*((i-27)/10)*((i-28)/9)*((i-29)/8)*((i-30)/7)*((i-31)/6)*((i-32)/5)*((i-33)/4)*((i-34)/3)*((i-35)/2)*((i-36)/1))+-160520791904*Math.round(1*((i-0)/38)*((i-1)/37)*((i-2)/36)*((i-3)/35)*((i-4)/34)*((i-5)/33)*((i-6)/32)*((i-7)/31)*((i-8)/30)*((i-9)/29)*((i-10)/28)*((i-11)/27)*((i-12)/26)*((i-13)/25)*((i-14)/24)*((i-15)/23)*((i-16)/22)*((i-17)/21)*((i-18)/20)*((i-19)/19)*((i-20)/18)*((i-21)/17)*((i-22)/16)*((i-23)/15)*((i-24)/14)*((i-25)/13)*((i-26)/12)*((i-27)/11)*((i-28)/10)*((i-29)/9)*((i-30)/8)*((i-31)/7)*((i-32)/6)*((i-33)/5)*((i-34)/4)*((i-35)/3)*((i-36)/2)*((i-37)/1))+321041584713*Math.round(1*((i-0)/39)*((i-1)/38)*((i-2)/37)*((i-3)/36)*((i-4)/35)*((i-5)/34)*((i-6)/33)*((i-7)/32)*((i-8)/31)*((i-9)/30)*((i-10)/29)*((i-11)/28)*((i-12)/27)*((i-13)/26)*((i-14)/25)*((i-15)/24)*((i-16)/23)*((i-17)/22)*((i-18)/21)*((i-19)/20)*((i-20)/19)*((i-21)/18)*((i-22)/17)*((i-23)/16)*((i-24)/15)*((i-25)/14)*((i-26)/13)*((i-27)/12)*((i-28)/11)*((i-29)/10)*((i-30)/9)*((i-31)/8)*((i-32)/7)*((i-33)/6)*((i-34)/5)*((i-35)/4)*((i-36)/3)*((i-37)/2)*((i-38)/1))+-627938339760*Math.round(1*((i-0)/40)*((i-1)/39)*((i-2)/38)*((i-3)/37)*((i-4)/36)*((i-5)/35)*((i-6)/34)*((i-7)/33)*((i-8)/32)*((i-9)/31)*((i-10)/30)*((i-11)/29)*((i-12)/28)*((i-13)/27)*((i-14)/26)*((i-15)/25)*((i-16)/24)*((i-17)/23)*((i-18)/22)*((i-19)/21)*((i-20)/20)*((i-21)/19)*((i-22)/18)*((i-23)/17)*((i-24)/16)*((i-25)/15)*((i-26)/14)*((i-27)/13)*((i-28)/12)*((i-29)/11)*((i-30)/10)*((i-31)/9)*((i-32)/8)*((i-33)/7)*((i-34)/6)*((i-35)/5)*((i-36)/4)*((i-37)/3)*((i-38)/2)*((i-39)/1))+1204809019815*Math.round(1*((i-0)/41)*((i-1)/40)*((i-2)/39)*((i-3)/38)*((i-4)/37)*((i-5)/36)*((i-6)/35)*((i-7)/34)*((i-8)/33)*((i-9)/32)*((i-10)/31)*((i-11)/30)*((i-12)/29)*((i-13)/28)*((i-14)/27)*((i-15)/26)*((i-16)/25)*((i-17)/24)*((i-18)/23)*((i-19)/22)*((i-20)/21)*((i-21)/20)*((i-22)/19)*((i-23)/18)*((i-24)/17)*((i-25)/16)*((i-26)/15)*((i-27)/14)*((i-28)/13)*((i-29)/12)*((i-30)/11)*((i-31)/10)*((i-32)/9)*((i-33)/8)*((i-34)/7)*((i-35)/6)*((i-36)/5)*((i-37)/4)*((i-38)/3)*((i-39)/2)*((i-40)/1))+-2276206770520*Math.round(1*((i-0)/42)*((i-1)/41)*((i-2)/40)*((i-3)/39)*((i-4)/38)*((i-5)/37)*((i-6)/36)*((i-7)/35)*((i-8)/34)*((i-9)/33)*((i-10)/32)*((i-11)/31)*((i-12)/30)*((i-13)/29)*((i-14)/28)*((i-15)/27)*((i-16)/26)*((i-17)/25)*((i-18)/24)*((i-19)/23)*((i-20)/22)*((i-21)/21)*((i-22)/20)*((i-23)/19)*((i-24)/18)*((i-25)/17)*((i-26)/16)*((i-27)/15)*((i-28)/14)*((i-29)/13)*((i-30)/12)*((i-31)/11)*((i-32)/10)*((i-33)/9)*((i-34)/8)*((i-35)/7)*((i-36)/6)*((i-37)/5)*((i-38)/4)*((i-39)/3)*((i-40)/2)*((i-41)/1))+4254673762574*Math.round(1*((i-0)/43)*((i-1)/42)*((i-2)/41)*((i-3)/40)*((i-4)/39)*((i-5)/38)*((i-6)/37)*((i-7)/36)*((i-8)/35)*((i-9)/34)*((i-10)/33)*((i-11)/32)*((i-12)/31)*((i-13)/30)*((i-14)/29)*((i-15)/28)*((i-16)/27)*((i-17)/26)*((i-18)/25)*((i-19)/24)*((i-20)/23)*((i-21)/22)*((i-22)/21)*((i-23)/20)*((i-24)/19)*((i-25)/18)*((i-26)/17)*((i-27)/16)*((i-28)/15)*((i-29)/14)*((i-30)/13)*((i-31)/12)*((i-32)/11)*((i-33)/10)*((i-34)/9)*((i-35)/8)*((i-36)/7)*((i-37)/6)*((i-38)/5)*((i-39)/4)*((i-40)/3)*((i-41)/2)*((i-42)/1))+-7914840120452*Math.round(1*((i-0)/44)*((i-1)/43)*((i-2)/42)*((i-3)/41)*((i-4)/40)*((i-5)/39)*((i-6)/38)*((i-7)/37)*((i-8)/36)*((i-9)/35)*((i-10)/34)*((i-11)/33)*((i-12)/32)*((i-13)/31)*((i-14)/30)*((i-15)/29)*((i-16)/28)*((i-17)/27)*((i-18)/26)*((i-19)/25)*((i-20)/24)*((i-21)/23)*((i-22)/22)*((i-23)/21)*((i-24)/20)*((i-25)/19)*((i-26)/18)*((i-27)/17)*((i-28)/16)*((i-29)/15)*((i-30)/14)*((i-31)/13)*((i-32)/12)*((i-33)/11)*((i-34)/10)*((i-35)/9)*((i-36)/8)*((i-37)/7)*((i-38)/6)*((i-39)/5)*((i-40)/4)*((i-41)/3)*((i-42)/2)*((i-43)/1))+14755713366633*Math.round(1*((i-0)/45)*((i-1)/44)*((i-2)/43)*((i-3)/42)*((i-4)/41)*((i-5)/40)*((i-6)/39)*((i-7)/38)*((i-8)/37)*((i-9)/36)*((i-10)/35)*((i-11)/34)*((i-12)/33)*((i-13)/32)*((i-14)/31)*((i-15)/30)*((i-16)/29)*((i-17)/28)*((i-18)/27)*((i-19)/26)*((i-20)/25)*((i-21)/24)*((i-22)/23)*((i-23)/22)*((i-24)/21)*((i-25)/20)*((i-26)/19)*((i-27)/18)*((i-28)/17)*((i-29)/16)*((i-30)/15)*((i-31)/14)*((i-32)/13)*((i-33)/12)*((i-34)/11)*((i-35)/10)*((i-36)/9)*((i-37)/8)*((i-38)/7)*((i-39)/6)*((i-40)/5)*((i-41)/4)*((i-42)/3)*((i-43)/2)*((i-44)/1))+-27776520662160*Math.round(1*((i-0)/46)*((i-1)/45)*((i-2)/44)*((i-3)/43)*((i-4)/42)*((i-5)/41)*((i-6)/40)*((i-7)/39)*((i-8)/38)*((i-9)/37)*((i-10)/36)*((i-11)/35)*((i-12)/34)*((i-13)/33)*((i-14)/32)*((i-15)/31)*((i-16)/30)*((i-17)/29)*((i-18)/28)*((i-19)/27)*((i-20)/26)*((i-21)/25)*((i-22)/24)*((i-23)/23)*((i-24)/22)*((i-25)/21)*((i-26)/20)*((i-27)/19)*((i-28)/18)*((i-29)/17)*((i-30)/16)*((i-31)/15)*((i-32)/14)*((i-33)/13)*((i-34)/12)*((i-35)/11)*((i-36)/10)*((i-37)/9)*((i-38)/8)*((i-39)/7)*((i-40)/6)*((i-41)/5)*((i-42)/4)*((i-43)/3)*((i-44)/2)*((i-45)/1))+53164054207611*Math.round(1*((i-0)/47)*((i-1)/46)*((i-2)/45)*((i-3)/44)*((i-4)/43)*((i-5)/42)*((i-6)/41)*((i-7)/40)*((i-8)/39)*((i-9)/38)*((i-10)/37)*((i-11)/36)*((i-12)/35)*((i-13)/34)*((i-14)/33)*((i-15)/32)*((i-16)/31)*((i-17)/30)*((i-18)/29)*((i-19)/28)*((i-20)/27)*((i-21)/26)*((i-22)/25)*((i-23)/24)*((i-24)/23)*((i-25)/22)*((i-26)/21)*((i-27)/20)*((i-28)/19)*((i-29)/18)*((i-30)/17)*((i-31)/16)*((i-32)/15)*((i-33)/14)*((i-34)/13)*((i-35)/12)*((i-36)/11)*((i-37)/10)*((i-38)/9)*((i-39)/8)*((i-40)/7)*((i-41)/6)*((i-42)/5)*((i-43)/4)*((i-44)/3)*((i-45)/2)*((i-46)/1))+-103975831339140*Math.round(1*((i-0)/48)*((i-1)/47)*((i-2)/46)*((i-3)/45)*((i-4)/44)*((i-5)/43)*((i-6)/42)*((i-7)/41)*((i-8)/40)*((i-9)/39)*((i-10)/38)*((i-11)/37)*((i-12)/36)*((i-13)/35)*((i-14)/34)*((i-15)/33)*((i-16)/32)*((i-17)/31)*((i-18)/30)*((i-19)/29)*((i-20)/28)*((i-21)/27)*((i-22)/26)*((i-23)/25)*((i-24)/24)*((i-25)/23)*((i-26)/22)*((i-27)/21)*((i-28)/20)*((i-29)/19)*((i-30)/18)*((i-31)/17)*((i-32)/16)*((i-33)/15)*((i-34)/14)*((i-35)/13)*((i-36)/12)*((i-37)/11)*((i-38)/10)*((i-39)/9)*((i-40)/8)*((i-41)/7)*((i-42)/6)*((i-43)/5)*((i-44)/4)*((i-45)/3)*((i-46)/2)*((i-47)/1))+208138306632137*Math.round(1*((i-0)/49)*((i-1)/48)*((i-2)/47)*((i-3)/46)*((i-4)/45)*((i-5)/44)*((i-6)/43)*((i-7)/42)*((i-8)/41)*((i-9)/40)*((i-10)/39)*((i-11)/38)*((i-12)/37)*((i-13)/36)*((i-14)/35)*((i-15)/34)*((i-16)/33)*((i-17)/32)*((i-18)/31)*((i-19)/30)*((i-20)/29)*((i-21)/28)*((i-22)/27)*((i-23)/26)*((i-24)/25)*((i-25)/24)*((i-26)/23)*((i-27)/22)*((i-28)/21)*((i-29)/20)*((i-30)/19)*((i-31)/18)*((i-32)/17)*((i-33)/16)*((i-34)/15)*((i-35)/14)*((i-36)/13)*((i-37)/12)*((i-38)/11)*((i-39)/10)*((i-40)/9)*((i-41)/8)*((i-42)/7)*((i-43)/6)*((i-44)/5)*((i-45)/4)*((i-46)/3)*((i-47)/2)*((i-48)/1))+-425620349055645*Math.round(1*((i-0)/50)*((i-1)/49)*((i-2)/48)*((i-3)/47)*((i-4)/46)*((i-5)/45)*((i-6)/44)*((i-7)/43)*((i-8)/42)*((i-9)/41)*((i-10)/40)*((i-11)/39)*((i-12)/38)*((i-13)/37)*((i-14)/36)*((i-15)/35)*((i-16)/34)*((i-17)/33)*((i-18)/32)*((i-19)/31)*((i-20)/30)*((i-21)/29)*((i-22)/28)*((i-23)/27)*((i-24)/26)*((i-25)/25)*((i-26)/24)*((i-27)/23)*((i-28)/22)*((i-29)/21)*((i-30)/20)*((i-31)/19)*((i-32)/18)*((i-33)/17)*((i-34)/16)*((i-35)/15)*((i-36)/14)*((i-37)/13)*((i-38)/12)*((i-39)/11)*((i-40)/10)*((i-41)/9)*((i-42)/8)*((i-43)/7)*((i-44)/6)*((i-45)/5)*((i-46)/4)*((i-47)/3)*((i-48)/2)*((i-49)/1))+884722839970606*Math.round(1*((i-0)/51)*((i-1)/50)*((i-2)/49)*((i-3)/48)*((i-4)/47)*((i-5)/46)*((i-6)/45)*((i-7)/44)*((i-8)/43)*((i-9)/42)*((i-10)/41)*((i-11)/40)*((i-12)/39)*((i-13)/38)*((i-14)/37)*((i-15)/36)*((i-16)/35)*((i-17)/34)*((i-18)/33)*((i-19)/32)*((i-20)/31)*((i-21)/30)*((i-22)/29)*((i-23)/28)*((i-24)/27)*((i-25)/26)*((i-26)/25)*((i-27)/24)*((i-28)/23)*((i-29)/22)*((i-30)/21)*((i-31)/20)*((i-32)/19)*((i-33)/18)*((i-34)/17)*((i-35)/16)*((i-36)/15)*((i-37)/14)*((i-38)/13)*((i-39)/12)*((i-40)/11)*((i-41)/10)*((i-42)/9)*((i-43)/8)*((i-44)/7)*((i-45)/6)*((i-46)/5)*((i-47)/4)*((i-48)/3)*((i-49)/2)*((i-50)/1))+-1857183748827153*Math.round(1*((i-0)/52)*((i-1)/51)*((i-2)/50)*((i-3)/49)*((i-4)/48)*((i-5)/47)*((i-6)/46)*((i-7)/45)*((i-8)/44)*((i-9)/43)*((i-10)/42)*((i-11)/41)*((i-12)/40)*((i-13)/39)*((i-14)/38)*((i-15)/37)*((i-16)/36)*((i-17)/35)*((i-18)/34)*((i-19)/33)*((i-20)/32)*((i-21)/31)*((i-22)/30)*((i-23)/29)*((i-24)/28)*((i-25)/27)*((i-26)/26)*((i-27)/25)*((i-28)/24)*((i-29)/23)*((i-30)/22)*((i-31)/21)*((i-32)/20)*((i-33)/19)*((i-34)/18)*((i-35)/17)*((i-36)/16)*((i-37)/15)*((i-38)/14)*((i-39)/13)*((i-40)/12)*((i-41)/11)*((i-42)/10)*((i-43)/9)*((i-44)/8)*((i-45)/7)*((i-46)/6)*((i-47)/5)*((i-48)/4)*((i-49)/3)*((i-50)/2)*((i-51)/1))+3909404796652936*Math.round(1*((i-0)/53)*((i-1)/52)*((i-2)/51)*((i-3)/50)*((i-4)/49)*((i-5)/48)*((i-6)/47)*((i-7)/46)*((i-8)/45)*((i-9)/44)*((i-10)/43)*((i-11)/42)*((i-12)/41)*((i-13)/40)*((i-14)/39)*((i-15)/38)*((i-16)/37)*((i-17)/36)*((i-18)/35)*((i-19)/34)*((i-20)/33)*((i-21)/32)*((i-22)/31)*((i-23)/30)*((i-24)/29)*((i-25)/28)*((i-26)/27)*((i-27)/26)*((i-28)/25)*((i-29)/24)*((i-30)/23)*((i-31)/22)*((i-32)/21)*((i-33)/20)*((i-34)/19)*((i-35)/18)*((i-36)/17)*((i-37)/16)*((i-38)/15)*((i-39)/14)*((i-40)/13)*((i-41)/12)*((i-42)/11)*((i-43)/10)*((i-44)/9)*((i-45)/8)*((i-46)/7)*((i-47)/6)*((i-48)/5)*((i-49)/4)*((i-50)/3)*((i-51)/2)*((i-52)/1))+-8195615777370807*Math.round(1*((i-0)/54)*((i-1)/53)*((i-2)/52)*((i-3)/51)*((i-4)/50)*((i-5)/49)*((i-6)/48)*((i-7)/47)*((i-8)/46)*((i-9)/45)*((i-10)/44)*((i-11)/43)*((i-12)/42)*((i-13)/41)*((i-14)/40)*((i-15)/39)*((i-16)/38)*((i-17)/37)*((i-18)/36)*((i-19)/35)*((i-20)/34)*((i-21)/33)*((i-22)/32)*((i-23)/31)*((i-24)/30)*((i-25)/29)*((i-26)/28)*((i-27)/27)*((i-28)/26)*((i-29)/25)*((i-30)/24)*((i-31)/23)*((i-32)/22)*((i-33)/21)*((i-34)/20)*((i-35)/19)*((i-36)/18)*((i-37)/17)*((i-38)/16)*((i-39)/15)*((i-40)/14)*((i-41)/13)*((i-42)/12)*((i-43)/11)*((i-44)/10)*((i-45)/9)*((i-46)/8)*((i-47)/7)*((i-48)/6)*((i-49)/5)*((i-50)/4)*((i-51)/3)*((i-52)/2)*((i-53)/1))+16994979589974346*Math.round(1*((i-0)/55)*((i-1)/54)*((i-2)/53)*((i-3)/52)*((i-4)/51)*((i-5)/50)*((i-6)/49)*((i-7)/48)*((i-8)/47)*((i-9)/46)*((i-10)/45)*((i-11)/44)*((i-12)/43)*((i-13)/42)*((i-14)/41)*((i-15)/40)*((i-16)/39)*((i-17)/38)*((i-18)/37)*((i-19)/36)*((i-20)/35)*((i-21)/34)*((i-22)/33)*((i-23)/32)*((i-24)/31)*((i-25)/30)*((i-26)/29)*((i-27)/28)*((i-28)/27)*((i-29)/26)*((i-30)/25)*((i-31)/24)*((i-32)/23)*((i-33)/22)*((i-34)/21)*((i-35)/20)*((i-36)/19)*((i-37)/18)*((i-38)/17)*((i-39)/16)*((i-40)/15)*((i-41)/14)*((i-42)/13)*((i-43)/12)*((i-44)/11)*((i-45)/10)*((i-46)/9)*((i-47)/8)*((i-48)/7)*((i-49)/6)*((i-50)/5)*((i-51)/4)*((i-52)/3)*((i-53)/2)*((i-54)/1))+-34598925396029428*Math.round(1*((i-0)/56)*((i-1)/55)*((i-2)/54)*((i-3)/53)*((i-4)/52)*((i-5)/51)*((i-6)/50)*((i-7)/49)*((i-8)/48)*((i-9)/47)*((i-10)/46)*((i-11)/45)*((i-12)/44)*((i-13)/43)*((i-14)/42)*((i-15)/41)*((i-16)/40)*((i-17)/39)*((i-18)/38)*((i-19)/37)*((i-20)/36)*((i-21)/35)*((i-22)/34)*((i-23)/33)*((i-24)/32)*((i-25)/31)*((i-26)/30)*((i-27)/29)*((i-28)/28)*((i-29)/27)*((i-30)/26)*((i-31)/25)*((i-32)/24)*((i-33)/23)*((i-34)/22)*((i-35)/21)*((i-36)/20)*((i-37)/19)*((i-38)/18)*((i-39)/17)*((i-40)/16)*((i-41)/15)*((i-42)/14)*((i-43)/13)*((i-44)/12)*((i-45)/11)*((i-46)/10)*((i-47)/9)*((i-48)/8)*((i-49)/7)*((i-50)/6)*((i-51)/5)*((i-52)/4)*((i-53)/3)*((i-54)/2)*((i-55)/1))+68349348631526670*Math.round(1*((i-0)/57)*((i-1)/56)*((i-2)/55)*((i-3)/54)*((i-4)/53)*((i-5)/52)*((i-6)/51)*((i-7)/50)*((i-8)/49)*((i-9)/48)*((i-10)/47)*((i-11)/46)*((i-12)/45)*((i-13)/44)*((i-14)/43)*((i-15)/42)*((i-16)/41)*((i-17)/40)*((i-18)/39)*((i-19)/38)*((i-20)/37)*((i-21)/36)*((i-22)/35)*((i-23)/34)*((i-24)/33)*((i-25)/32)*((i-26)/31)*((i-27)/30)*((i-28)/29)*((i-29)/28)*((i-30)/27)*((i-31)/26)*((i-32)/25)*((i-33)/24)*((i-34)/23)*((i-35)/22)*((i-36)/21)*((i-37)/20)*((i-38)/19)*((i-39)/18)*((i-40)/17)*((i-41)/16)*((i-42)/15)*((i-43)/14)*((i-44)/13)*((i-45)/12)*((i-46)/11)*((i-47)/10)*((i-48)/9)*((i-49)/8)*((i-50)/7)*((i-51)/6)*((i-52)/5)*((i-53)/4)*((i-54)/3)*((i-55)/2)*((i-56)/1))+-126849859681465840*Math.round(1*((i-0)/58)*((i-1)/57)*((i-2)/56)*((i-3)/55)*((i-4)/54)*((i-5)/53)*((i-6)/52)*((i-7)/51)*((i-8)/50)*((i-9)/49)*((i-10)/48)*((i-11)/47)*((i-12)/46)*((i-13)/45)*((i-14)/44)*((i-15)/43)*((i-16)/42)*((i-17)/41)*((i-18)/40)*((i-19)/39)*((i-20)/38)*((i-21)/37)*((i-22)/36)*((i-23)/35)*((i-24)/34)*((i-25)/33)*((i-26)/32)*((i-27)/31)*((i-28)/30)*((i-29)/29)*((i-30)/28)*((i-31)/27)*((i-32)/26)*((i-33)/25)*((i-34)/24)*((i-35)/23)*((i-36)/22)*((i-37)/21)*((i-38)/20)*((i-39)/19)*((i-40)/18)*((i-41)/17)*((i-42)/16)*((i-43)/15)*((i-44)/14)*((i-45)/13)*((i-46)/12)*((i-47)/11)*((i-48)/10)*((i-49)/9)*((i-50)/8)*((i-51)/7)*((i-52)/6)*((i-53)/5)*((i-54)/4)*((i-55)/3)*((i-56)/2)*((i-57)/1))+189776303470473200*Math.round(1*((i-0)/59)*((i-1)/58)*((i-2)/57)*((i-3)/56)*((i-4)/55)*((i-5)/54)*((i-6)/53)*((i-7)/52)*((i-8)/51)*((i-9)/50)*((i-10)/49)*((i-11)/48)*((i-12)/47)*((i-13)/46)*((i-14)/45)*((i-15)/44)*((i-16)/43)*((i-17)/42)*((i-18)/41)*((i-19)/40)*((i-20)/39)*((i-21)/38)*((i-22)/37)*((i-23)/36)*((i-24)/35)*((i-25)/34)*((i-26)/33)*((i-27)/32)*((i-28)/31)*((i-29)/30)*((i-30)/29)*((i-31)/28)*((i-32)/27)*((i-33)/26)*((i-34)/25)*((i-35)/24)*((i-36)/23)*((i-37)/22)*((i-38)/21)*((i-39)/20)*((i-40)/19)*((i-41)/18)*((i-42)/17)*((i-43)/16)*((i-44)/15)*((i-45)/14)*((i-46)/13)*((i-47)/12)*((i-48)/11)*((i-49)/10)*((i-50)/9)*((i-51)/8)*((i-52)/7)*((i-53)/6)*((i-54)/5)*((i-55)/4)*((i-56)/3)*((i-57)/2)*((i-58)/1))+51028516348018696*Math.round(1*((i-0)/60)*((i-1)/59)*((i-2)/58)*((i-3)/57)*((i-4)/56)*((i-5)/55)*((i-6)/54)*((i-7)/53)*((i-8)/52)*((i-9)/51)*((i-10)/50)*((i-11)/49)*((i-12)/48)*((i-13)/47)*((i-14)/46)*((i-15)/45)*((i-16)/44)*((i-17)/43)*((i-18)/42)*((i-19)/41)*((i-20)/40)*((i-21)/39)*((i-22)/38)*((i-23)/37)*((i-24)/36)*((i-25)/35)*((i-26)/34)*((i-27)/33)*((i-28)/32)*((i-29)/31)*((i-30)/30)*((i-31)/29)*((i-32)/28)*((i-33)/27)*((i-34)/26)*((i-35)/25)*((i-36)/24)*((i-37)/23)*((i-38)/22)*((i-39)/21)*((i-40)/20)*((i-41)/19)*((i-42)/18)*((i-43)/17)*((i-44)/16)*((i-45)/15)*((i-46)/14)*((i-47)/13)*((i-48)/12)*((i-49)/11)*((i-50)/10)*((i-51)/9)*((i-52)/8)*((i-53)/7)*((i-54)/6)*((i-55)/5)*((i-56)/4)*((i-57)/3)*((i-58)/2)*((i-59)/1))} 

Эта полиномиальная функция (упрощенная до степени 25 и без округления) построена, посмотрите на значения для целых чисел (читаемые для [6; 19]):

введите описание изображения здесь

Тесты:

for (var i=0; i<60; i++) { console.log(i + ' : ' + digitsum(i)) }
0 : 0
1 : 1
2 : 2
3 : 3
4 : 4
5 : 5
6 : 6
7 : 7
8 : 8
9 : 9
10 : 1
11 : 2
12 : 3
13 : 4
14 : 5
15 : 6
16 : 7
17 : 8
18 : 9
19 : 10
20 : 2
21 : 3
22 : 4
23 : 5
24 : 6
25 : 7
26 : 8
27 : 9
28 : 10
29 : 11
30 : 3
31 : 4
32 : 5
33 : 6
34 : 7
35 : 8
36 : 9
37 : 10
38 : 11
39 : 12
40 : 4
41 : 5
42 : 6
43 : 7
44 : 8
45 : 9
46 : 10
47 : 11
48 : 12
49 : 13
50 : 5
51 : 6
52 : 7
53 : 8
54 : 9
55 : 10
56 : 12 //precision issue starts here
57 : 16
58 : 16
59 : 0 
Майкл М.
источник
+1 Это круто. Вместо полиномиальной интерполяции вы можете захотеть выполнить сплайн-интерполяцию, однако это также возможно сделать с помощью эволюционного алгоритма, но он может быть более точным.
SztupY
@SztupY, интересно! Я не привык работать со сплайном, но я обязательно взгляну на этот метод. Спасибо.
Майкл М.