Учитывая квадратную матрицу, выведите собственные значения матрицы. Каждое собственное значение должно повторяться количество раз, равное его алгебраической кратности.
Собственные значения матрицы A
являются скалярным значением , λ
такими , что для некоторого вектора - столбца v
, A*v = λ*v
. Они также являются решениями характеристического полинома A
: det(A - λ*I) = 0
(где I
- единичная матрица с такими же размерами, что и A
).
Выходы должны быть с точностью до 3 значащих цифр. Все входы и выходы будут в пределах представимого диапазона числовых значений для выбранного вами языка.
Встроенные функции допустимы, но мы рекомендуем включать решения, в которых не используются встроенные функции.
Тестовые случаи
В этих тестовых случаях I
представляет воображаемую единицу. Комплексные числа пишутся в форме a + b*I
. Все выходы имеют 3 значащие цифры точности.
[[42.0]] -> [42.0]
[[1.0, 0.0], [0.0, 1.0]] -> [1.00, 1.00]
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]] -> [16.1, -1.12, -1.24e-15]
[[1.2, 3.4, 5.6, 7.8], [6.3, 0.9, -5.4, -2.3], [-12.0, -9.7, 7.3, 5.9], [-2.5, 7.9, 5.3, 4.4]] -> [7.20 + 5.54*I, 7.20 - 5.54*I, -4.35, 3.75]
[[-3.22 - 9.07*I, 0.193 + 9.11*I, 5.59 + 1.33*I, -3.0 - 6.51*I, -3.73 - 6.42*I], [8.49 - 3.46*I, -1.12 + 6.39*I, -8.25 - 0.455*I, 9.37 - 6.43*I, -6.82 + 8.34*I], [-5.26 + 8.07*I, -6.68 + 3.72*I, -3.21 - 5.63*I, 9.31 + 3.86*I, 4.11 - 8.82*I], [-1.24 + 9.04*I, 8.87 - 0.0352*I, 8.35 + 4.5*I, -9.62 - 2.21*I, 1.76 - 5.72*I], [7.0 - 4.79*I, 9.3 - 2.31*I, -2.41 - 7.3*I, -7.77 - 6.85*I, -9.32 + 2.71*I]] -> [5.18 + 16.7*I, -24.9 - 2.01*I, -5.59 - 13.8*I, 0.0438 - 10.6*I, -1.26 + 1.82*I]
[[-30.6 - 73.3*I, 1.03 - 15.6*I, -83.4 + 72.5*I, 24.1 + 69.6*I, 52.3 + 2.68*I, 23.8 + 98.0*I, 96.8 + 49.7*I, -26.2 - 5.87*I, -52.4 + 98.2*I, 78.1 + 6.69*I], [-59.7 - 66.9*I, -26.3 + 65.0*I, 5.71 + 4.75*I, 91.9 + 82.5*I, -94.6 + 51.8*I, 61.7 + 82.3*I, 54.8 - 27.8*I, 45.7 + 59.2*I, -28.3 + 78.1*I, -59.9 - 54.5*I], [-36.0 + 22.9*I, -51.7 + 10.8*I, -46.6 - 88.0*I, -52.8 - 32.0*I, -75.7 - 23.4*I, 96.2 - 71.2*I, -15.3 - 32.7*I, 26.9 + 6.31*I, -59.2 + 25.8*I, -0.836 - 98.3*I], [-65.2 - 90.6*I, 65.6 - 24.1*I, 72.5 + 33.9*I, 1.47 - 93.8*I, -0.143 + 39.0*I, -3.71 - 30.1*I, 60.1 - 42.4*I, 55.6 + 5.65*I, 48.2 - 53.0*I, -3.9 - 33.0*I], [7.04 + 0.0326*I, -12.8 - 50.4*I, 70.1 - 30.3*I, 42.7 - 76.3*I, -3.24 - 64.1*I, 97.3 + 66.8*I, -11.0 + 16.5*I, -40.6 - 90.7*I, 71.5 - 26.2*I, 83.1 - 49.4*I], [-59.5 + 8.08*I, 74.6 + 29.1*I, -65.8 + 26.3*I, -76.7 - 83.2*I, 26.2 + 99.0*I, -54.8 + 33.3*I, 2.79 - 16.6*I, -85.2 - 3.64*I, 98.4 - 12.4*I, -27.6 - 62.3*I], [82.6 - 95.3*I, 55.8 - 73.6*I, -49.9 + 42.1*I, 53.4 + 16.5*I, 80.2 - 43.6*I, -43.3 - 3.9*I, -2.26 - 58.3*I, -19.9 + 98.1*I, 47.2 + 62.4*I, -63.3 - 54.0*I], [-88.7 + 57.7*I, 55.6 + 70.9*I, 84.1 - 52.8*I, 71.3 - 29.8*I, -3.74 - 19.6*I, 29.7 + 1.18*I, -70.6 - 10.5*I, 37.6 + 99.9*I, 87.0 + 19.0*I, -26.1 - 82.0*I], [69.5 - 47.1*I, 11.3 - 59.0*I, -84.3 - 35.1*I, -3.61 - 35.7*I, 88.0 + 88.1*I, -47.5 + 0.956*I, 14.1 + 89.8*I, 51.3 + 0.14*I, -78.5 - 66.5*I, 2.12 - 53.2*I], [0.599 - 71.2*I, 21.7 + 10.8*I, 19.9 - 97.1*I, 20.5 + 37.4*I, 24.7 + 40.6*I, -82.7 - 29.1*I, 77.9 + 12.5*I, 94.1 - 87.4*I, 78.6 - 89.6*I, 82.6 - 69.6*I]] -> [262. - 180.*I, 179. + 117.*I, 10.3 + 214.*I, 102. - 145.*I, -36.5 + 97.7*I, -82.2 + 89.8*I, -241. - 104.*I, -119. - 26.0*I, -140. - 218.*I, -56.0 - 160.*I]
Ответы:
Haskell ,
576 554 532507 байтНет встроенных модулей!
Попробуйте онлайн!
Большое спасибо @ ØrjanJohansen за -47 байтов!
объяснение
Сначала вычисляется характеристический многочлен с помощью алгоритма Фаддеева – ЛеВерье, который является функцией
f
. Затем функцияz
вычисляет все корни этого полинома путем итерации,g
которая реализует метод Лагерра для нахождения корня, как только корень найден, он удаляется и вызываетсяg
снова, пока у полинома не будет степени 1, которая тривиально решается с помощьюz[a,b]=[-b/a]
.Ungolfed
Я снова встраиваемые функции
sum
,length
,magnitude
,fromIntegral
,zipWith
и(&)
, а также маленький помощник(!)
. ФункцияfaddeevLeVerrier
соответствует , чтобыf
,roots
чтобыz
иg
кlaguerre
соответственно.источник
n!
!!
и был действительно смущен: DОктава , 4 байта
Попробуйте онлайн!
Всего на два байта больше, чем эквивалент языка игры в гольф MATL!
Определяет дескриптор анонимной функции для
eig
встроенного. Интересно, что философия дизайна MATLAB идет вразрез со многими высококлассными языками, которые нравится использоватьDescripteFunctionNamesTakingArguments()
, тогда как MATLAB и, следовательно, Octave стремятся получить самое короткое однозначное имя из возможных. Например, чтобы получить ы ubset собственных значений (например, наименьшийn
по абсолютной величине), вы используетеeigs
.В качестве бонуса, вот функция (работает в MATLAB, и теоретически может работать в Octave, но
solve
это не совсем соответствует задаче), которая не использует встроенные модули, но вместо этого символически решает проблему собственных значенийdet(A-λI)=0
и преобразует ее в числовой форме с использованиемvpa
источник
MATL , 2 байта
Попробуйте онлайн!
объяснение
Я следовал обычному совету по числовой линейной алгебре: вместо написания своей собственной функции используйте встроенную функцию, специально разработанную для избежания нестабильности чисел.
Кстати, это короче. ¯ \ _ (ツ) _ / ¯
источник
Yv
?ZQ
) характеристического полинома. Но явное вычисление коэффициентов многочлена может быть оченьMathematica, 11 байт
Попробуйте онлайн!
источник
First@Eigensystem@#&
R , 22 байта
Попробуйте онлайн!
Берет
m
в качестве матрицы. К сожалению,eigen
функция в R возвращает объект классаeigen
, который имеет два поля:values
собственные значения иvectors
собственные векторы.Однако более досадно, что необязательный аргумент
only.values
возвращает alist
с двумя полями:values
содержащими собственные значения, иvectors
, установленными вNULL
, но, посколькуeigen(m,,T)
он также составляет 22 байта, это промывка.источник
Юля , 12 байт
Попробуйте онлайн!
К сожалению,
eig
возвращает как собственные значения, так и собственные векторы в виде кортежа, поэтому мы тратим еще 9 байтов, чтобы преобразовать его и получить первый элемент.источник
Python + NumPy, 33 байта
источник
Пари / ГП , 19 байт
Попробуйте онлайн!
источник