“Признание лица Питона” Ответ

FacereCognizer Python

import face_recognition
import os
import cv2


KNOWN_FACES_DIR = 'known_faces'
UNKNOWN_FACES_DIR = 'unknown_faces'
TOLERANCE = 0.6
FRAME_THICKNESS = 3
FONT_THICKNESS = 2
MODEL = 'cnn'  # default: 'hog', other one can be 'cnn' - CUDA accelerated (if available) deep-learning pretrained model


# Returns (R, G, B) from name
def name_to_color(name):
    # Take 3 first letters, tolower()
    # lowercased character ord() value rage is 97 to 122, substract 97, multiply by 8
    color = [(ord(c.lower())-97)*8 for c in name[:3]]
    return color


print('Loading known faces...')
known_faces = []
known_names = []

# We oranize known faces as subfolders of KNOWN_FACES_DIR
# Each subfolder's name becomes our label (name)
for name in os.listdir(KNOWN_FACES_DIR):

    # Next we load every file of faces of known person
    for filename in os.listdir(f'{KNOWN_FACES_DIR}/{name}'):

        # Load an image
        image = face_recognition.load_image_file(f'{KNOWN_FACES_DIR}/{name}/{filename}')

        # Get 128-dimension face encoding
        # Always returns a list of found faces, for this purpose we take first face only (assuming one face per image as you can't be twice on one image)
        encoding = face_recognition.face_encodings(image)[0]

        # Append encodings and name
        known_faces.append(encoding)
        known_names.append(name)


print('Processing unknown faces...')
# Now let's loop over a folder of faces we want to label
for filename in os.listdir(UNKNOWN_FACES_DIR):

    # Load image
    print(f'Filename {filename}', end='')
    image = face_recognition.load_image_file(f'{UNKNOWN_FACES_DIR}/{filename}')

    # This time we first grab face locations - we'll need them to draw boxes
    locations = face_recognition.face_locations(image, model=MODEL)

    # Now since we know loctions, we can pass them to face_encodings as second argument
    # Without that it will search for faces once again slowing down whole process
    encodings = face_recognition.face_encodings(image, locations)

    # We passed our image through face_locations and face_encodings, so we can modify it
    # First we need to convert it from RGB to BGR as we are going to work with cv2
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

    # But this time we assume that there might be more faces in an image - we can find faces of dirrerent people
    print(f', found {len(encodings)} face(s)')
    for face_encoding, face_location in zip(encodings, locations):

        # We use compare_faces (but might use face_distance as well)
        # Returns array of True/False values in order of passed known_faces
        results = face_recognition.compare_faces(known_faces, face_encoding, TOLERANCE)

        # Since order is being preserved, we check if any face was found then grab index
        # then label (name) of first matching known face withing a tolerance
        match = None
        if True in results:  # If at least one is true, get a name of first of found labels
            match = known_names[results.index(True)]
            print(f' - {match} from {results}')

            # Each location contains positions in order: top, right, bottom, left
            top_left = (face_location[3], face_location[0])
            bottom_right = (face_location[1], face_location[2])

            # Get color by name using our fancy function
            color = name_to_color(match)

            # Paint frame
            cv2.rectangle(image, top_left, bottom_right, color, FRAME_THICKNESS)

            # Now we need smaller, filled grame below for a name
            # This time we use bottom in both corners - to start from bottom and move 50 pixels down
            top_left = (face_location[3], face_location[2])
            bottom_right = (face_location[1], face_location[2] + 22)

            # Paint frame
            cv2.rectangle(image, top_left, bottom_right, color, cv2.FILLED)

            # Wite a name
            cv2.putText(image, match, (face_location[3] + 10, face_location[2] + 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 200, 200), FONT_THICKNESS)

    # Show image
    cv2.imshow(filename, image)
    cv2.waitKey(0)
    cv2.destroyWindow(filename)
Mardax

Pycharm установить face_recognition

$ git clone git://github.com/ageitgey/face_recognition
Xerothermic Xenomorph

Признание лица Питона

import cv2

video_capture = cv2.VideoCapture(0)

# Loading the required haar-cascade xml classifier file, classifies face from non face
haar_cascade = cv2.CascadeClassifier('Haarcascade_frontalface_default.xml')
print(haar_cascade)
while True:
    # Capture frame-by-frame
    ret, img = video_capture.read()

    # Converting image to grayscale, detection model sees it as grayscale
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
    # Applying the face detection method on the grayscale image
    faces_rect = haar_cascade.detectMultiScale(gray_img, 1.1, 9)
    
    # Iterating through rectangles of detected faces, displaying the rectangle
    for (x, y, w, h) in faces_rect:
        cv2.rectangle(img, (x, y), (x+w, y+h), (70, 0, 255), 2)

    # Display the resulting frame
    cv2.imshow('Video', img)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()
Dylan1080

Признание лица Питона

# simple python code: face recognition
import cv2
import numpy as np

detect = cv2.CascadeClassifier(cv2.data.haarcascades +'haarcascade_frontalface_default.xml')

cam = cv2.VideoCapture('image.jpg')
check, img = cam.read()

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = detect.detectMultiScale(gray,1.2,5)

for (x,y,w,h) in faces:
      cv2.rectangle(img, (x,y), (x+w, y+h), (255, 0, 0), 2)

cv2.imshow('Face Detect', img)
cv2.waitKey(600000)

cam.release()
cv2.destroyAllWindows()
Becon

Ответы похожие на “Признание лица Питона”

Вопросы похожие на “Признание лица Питона”

Больше похожих ответов на “Признание лица Питона” по Python

Смотреть популярные ответы по языку

Смотреть другие языки программирования