“Линейная регрессия Python” Ответ

Scikit изучать линейную регрессию

from sklearn.linear_model import LinearRegression
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
reg.score(X, y)
reg.coef_
reg.intercept_
reg.predict(np.array([[3, 5]]))
Zany Zebra

Алгоритм логистической регрессии в Python

# import the class
from sklearn.linear_model import LogisticRegression

# instantiate the model (using the default parameters)
logreg = LogisticRegression()

# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)
Wide-eyed Whale

Код линейной регрессии Python

import numpy as np
import matplotlib.pyplot as plt
 
def estimate_coef(x, y):
    # number of observations/points
    n = np.size(x)
 
    # mean of x and y vector
    m_x = np.mean(x)
    m_y = np.mean(y)
 
    # calculating cross-deviation and deviation about x
    SS_xy = np.sum(y*x) - n*m_y*m_x
    SS_xx = np.sum(x*x) - n*m_x*m_x
 
    # calculating regression coefficients
    b_1 = SS_xy / SS_xx
    b_0 = m_y - b_1*m_x
 
    return (b_0, b_1)
 
def plot_regression_line(x, y, b):
    # plotting the actual points as scatter plot
    plt.scatter(x, y, color = "m",
               marker = "o", s = 30)
 
    # predicted response vector
    y_pred = b[0] + b[1]*x
 
    # plotting the regression line
    plt.plot(x, y_pred, color = "g")
 
    # putting labels
    plt.xlabel('x')
    plt.ylabel('y')
 
    # function to show plot
    plt.show()
 
def main():
    # observations / data
    x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])
 
    # estimating coefficients
    b = estimate_coef(x, y)
    print("Estimated coefficients:\nb_0 = {}  \
          \nb_1 = {}".format(b[0], b[1]))
 
    # plotting regression line
    plot_regression_line(x, y, b)
 
if __name__ == "__main__":
    main()
Comfortable Cat

Линейная регрессия Python

>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
HotFlow

Линейная регрессия Python


import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('tips')
sb.regplot(x = "total_bill", y = "tip", data = df)
plt.show()
Nasty Nightingale

Ответы похожие на “Линейная регрессия Python”

Вопросы похожие на “Линейная регрессия Python”

Больше похожих ответов на “Линейная регрессия Python” по Python

Смотреть популярные ответы по языку

Смотреть другие языки программирования