“Функция Softmax Python” Ответ

Функция Softmax Python

def softmax(x):
    return np.exp(x) / np.sum(np.exp(x), axis=0)
Victorious Vole

функция SoftMax

import numpy as np
def softmax(x):
    """Calculates the softmax for each row of the input x.

    Your code should work for a row vector and also for matrices of shape (m,n).

    Argument:
    x -- A numpy matrix of shape (m,n)

    Returns:
    s -- A numpy matrix equal to the softmax of x, of shape (m,n)
    """
    
    #(≈ 3 lines of code)
    # Apply exp() element-wise to x. Use np.exp(...).
    # x_exp = ...

    # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
    # x_sum = ...
    
    # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
    # s = ...
    
    # YOUR CODE STARTS HERE
    x_exp = np.exp(x)
    x_sum = np.sum(x_exp, axis=1, keepdims=True)
    s=x_exp/x_sum
    
    # YOUR CODE ENDS HERE
    
    return s
josh.ipynb

Ответы похожие на “Функция Softmax Python”

Вопросы похожие на “Функция Softmax Python”

Больше похожих ответов на “Функция Softmax Python” по Python

Смотреть популярные ответы по языку

Смотреть другие языки программирования