Отправка цветов на монитор VGA

9

Я ищу простой способ отправить сигнал с моего Arduino на монитор VGA.

Какой будет самый простой метод, и какие компоненты будут необходимы?

Мне не нужно отображать изображение, только сплошной цвет.

Терри
источник
Посмотрите, поможет ли это .
Ник Гэммон

Ответы:

6

Моя страница о выводе Arduino Uno на VGA-монитор содержит много теории, в том числе эскиз, на котором отображаются такие цветные полосы:

Цветные полосы


Код

Чтобы сделать один цвет немного проще, этот эскиз сделал это для меня:

/*
 VGA colour video generation

 Author:   Nick Gammon
 Date:     22nd April 2012
 Version:  1.0

 Connections:

 D3 : Horizontal Sync (68 ohms in series) --> Pin 13 on DB15 socket
 D4 : Red pixel output (470 ohms in series) --> Pin 1 on DB15 socket
 D5 : Green pixel output (470 ohms in series) --> Pin 2 on DB15 socket
 D6 : Blue pixel output (470 ohms in series) --> Pin 3 on DB15 socket
 D10 : Vertical Sync (68 ohms in series) --> Pin 14 on DB15 socket

 Gnd : --> Pins 5, 6, 7, 8, 10 on DB15 socket

*/

#include <TimerHelpers.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>

const byte hSyncPin = 3;     // <------- HSYNC

const byte redPin = 4;       // <------- Red pixel data
const byte greenPin = 5;     // <------- Green pixel data
const byte bluePin = 6;      // <------- Blue pixel data

const byte vSyncPin = 10;    // <------- VSYNC

const int horizontalBytes = 60;  // 480 pixels wide
const int verticalPixels = 480;  // 480 pixels high

// Timer 1 - Vertical sync

// output    OC1B   pin 16  (D10) <------- VSYNC

//   Period: 16.64 ms (60 Hz)
//      1/60 * 1e6 = 16666.66 µs
//   Pulse for 64 µs  (2 x HSync width of 32 µs)
//    Sync pulse: 2 lines
//    Back porch: 33 lines
//    Active video: 480 lines
//    Front porch: 10 lines
//       Total: 525 lines

// Timer 2 - Horizontal sync

// output    OC2B   pin 5  (D3)   <------- HSYNC

//   Period: 32 µs (31.25 kHz)
//      (1/60) / 525 * 1e6 = 31.74 µs
//   Pulse for 4 µs (96 times 39.68 ns)
//    Sync pulse: 96 pixels
//    Back porch: 48 pixels
//    Active video: 640 pixels
//    Front porch: 16 pixels
//       Total: 800 pixels

// Pixel time =  ((1/60) / 525 * 1e9) / 800 = 39.68  ns
//  frequency =  1 / (((1/60) / 525 * 1e6) / 800) = 25.2 MHz

// However in practice, it we can only pump out pixels at 375 ns each because it
//  takes 6 clock cycles to read one in from RAM and send it out the port.


const byte verticalBackPorchLines = 35;  // includes sync pulse?
const int verticalFrontPorchLines = 525 - verticalBackPorchLines;

volatile int vLine;
volatile byte backPorchLinesToGo;

#define nop asm volatile ("nop\n\t")

// ISR: Vsync pulse
ISR (TIMER1_OVF_vect)
  {
  vLine = 0; 
  backPorchLinesToGo = verticalBackPorchLines;
  } // end of TIMER1_OVF_vect

// ISR: Hsync pulse ... this interrupt merely wakes us up
EMPTY_INTERRUPT  (TIMER2_OVF_vect)

void setup()
  {

  // disable Timer 0
  TIMSK0 = 0;  // no interrupts on Timer 0
  OCR0A = 0;   // and turn it off
  OCR0B = 0;

  // Timer 1 - vertical sync pulses
  pinMode (vSyncPin, OUTPUT); 
  Timer1::setMode (15, Timer1::PRESCALE_1024, Timer1::CLEAR_B_ON_COMPARE);
  OCR1A = 259;  // 16666 / 64 µs = 260 (less one)
  OCR1B = 0;    // 64 / 64 µs = 1 (less one)
  TIFR1 = bit (TOV1);   // clear overflow flag
  TIMSK1 = bit (TOIE1);  // interrupt on overflow on timer 1

  // Timer 2 - horizontal sync pulses
  pinMode (hSyncPin, OUTPUT); 
  Timer2::setMode (7, Timer2::PRESCALE_8, Timer2::CLEAR_B_ON_COMPARE);
  OCR2A = 63;   // 32 / 0.5 µs = 64 (less one)
  OCR2B = 7;    // 4 / 0.5 µs = 8 (less one)
  TIFR2 = bit (TOV2);   // clear overflow flag
  TIMSK2 = bit (TOIE2);  // interrupt on overflow on timer 2

  // prepare to sleep between horizontal sync pulses  
  set_sleep_mode (SLEEP_MODE_IDLE);  

  // pins for outputting the colour information
  pinMode (redPin, OUTPUT);
  pinMode (greenPin, OUTPUT);
  pinMode (bluePin, OUTPUT);

}  // end of setup

// draw a single scan line
void doOneScanLine ()
  {

  // after vsync we do the back porch
  if (backPorchLinesToGo)
    {
    backPorchLinesToGo--;
    return;   
    }  // end still doing back porch

  // if all lines done, do the front porch
  if (vLine >= verticalPixels)
    return;

  PORTD = bit (5) | bit (6);  // cyan (green + blue)
  delayMicroseconds (27);     // one scan line

  PORTD = 0;  // back to black
  // finished this line 
  vLine++;

  }  // end of doOneScanLine

void loop() 
  {
  // sleep to ensure we start up in a predictable way
  sleep_mode ();
  doOneScanLine ();
 }  // end of loop

Как предположил @ChrisStratton, аппаратные таймеры очень помогают.


электропроводка

Я подключил это так:

VGA проводка

VGA контакты


Библиотека TimerHelpers

Библиотека TimerHelpers.h описана на моей странице таймеров , копия ниже:

/*
 Timer Helpers library.

Devised and written by Nick Gammon.
Date: 21 March 2012
Version: 1.0

Licence: Released for public use.

See: http://www.gammon.com.au/forum/?id=11504

 Example:

 // set up Timer 1
 TCNT1 = 0;         // reset counter
 OCR1A =  999;       // compare A register value (1000 * clock speed)

 // Mode 4: CTC, top = OCR1A
 Timer1::setMode (4, Timer1::PRESCALE_1, Timer1::CLEAR_A_ON_COMPARE);

 TIFR1 |= bit (OCF1A);    // clear interrupt flag
 TIMSK1 = bit (OCIE1A);   // interrupt on Compare A Match  

*/

#ifndef _TimerHelpers_h
#define _TimerHelpers_h

#include <Arduino.h>

/* ---------------------------------------------------------------
 Timer 0 setup
 --------------------------------------------------------------- */

namespace Timer0 
{
  // TCCR0A, TCCR0B
  const byte Modes [8] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFF
  { bit (WGM00),               0 },            // 1: PWM, Phase-correct, top = 0xFF
  {               bit (WGM01), 0 },            // 2: CTC, top = OCR0A
  { bit (WGM00) | bit (WGM01), 0 },            // 3: Fast PWM, top = 0xFF
  { 0,                         bit (WGM02) },  // 4: Reserved
  { bit (WGM00),               bit (WGM02) },  // 5: PWM, Phase-correct, top = OCR0A
  {               bit (WGM01), bit (WGM02) },  // 6: Reserved
  { bit (WGM00) | bit (WGM01), bit (WGM02) },  // 7: Fast PWM, top = OCR0A

  };  // end of Timer0::Modes

  // Activation
  // Note: T0 is pin 6, Arduino port: D4
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_64, PRESCALE_256, PRESCALE_1024, T0_FALLING, T0_RISING };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 12, Arduino port: D6
    TOGGLE_A_ON_COMPARE  = bit (COM0A0), 
    CLEAR_A_ON_COMPARE   = bit (COM0A1), 
    SET_A_ON_COMPARE     = bit (COM0A0) | bit (COM0A1),

    // pin 11, Arduino port: D5
    TOGGLE_B_ON_COMPARE  = bit (COM0B0), 
    CLEAR_B_ON_COMPARE   = bit (COM0B1), 
    SET_B_ON_COMPARE     = bit (COM0B0) | bit (COM0B1),
  };


  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 7)  // sanity check
    return;

  // reset existing flags
  TCCR0A = 0;
  TCCR0B = 0;

  TCCR0A |= (Modes [mode] [0]) | port;  
  TCCR0B |= (Modes [mode] [1]) | clock;
  }  // end of Timer0::setMode

}  // end of namespace Timer0 

/* ---------------------------------------------------------------
 Timer 1 setup
 --------------------------------------------------------------- */

namespace Timer1 
{
  // TCCR1A, TCCR1B
  const byte Modes [16] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFFFF
  { bit (WGM10),               0 },            // 1: PWM, Phase-correct, 8 bit, top = 0xFF
  {               bit (WGM11), 0 },            // 2: PWM, Phase-correct, 9 bit, top = 0x1FF
  { bit (WGM10) | bit (WGM11), 0 },            // 3: PWM, Phase-correct, 10 bit, top = 0x3FF
  { 0,                         bit (WGM12) },  // 4: CTC, top = OCR1A
  { bit (WGM10),               bit (WGM12) },  // 5: Fast PWM, 8 bit, top = 0xFF
  {               bit (WGM11), bit (WGM12) },  // 6: Fast PWM, 9 bit, top = 0x1FF
  { bit (WGM10) | bit (WGM11), bit (WGM12) },  // 7: Fast PWM, 10 bit, top = 0x3FF
  { 0,                                       bit (WGM13) },  // 8: PWM, phase and frequency correct, top = ICR1    
  { bit (WGM10),                             bit (WGM13) },  // 9: PWM, phase and frequency correct, top = OCR1A    
  {               bit (WGM11),               bit (WGM13) },  // 10: PWM, phase correct, top = ICR1A    
  { bit (WGM10) | bit (WGM11),               bit (WGM13) },  // 11: PWM, phase correct, top = OCR1A
  { 0,                         bit (WGM12) | bit (WGM13) },  // 12: CTC, top = ICR1    
  { bit (WGM10),               bit (WGM12) | bit (WGM13) },  // 13: reserved
  {               bit (WGM11), bit (WGM12) | bit (WGM13) },  // 14: Fast PWM, TOP = ICR1
  { bit (WGM10) | bit (WGM11), bit (WGM12) | bit (WGM13) },  // 15: Fast PWM, TOP = OCR1A

  };  // end of Timer1::Modes

  // Activation
  // Note: T1 is pin 11, Arduino port: D5
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_64, PRESCALE_256, PRESCALE_1024, T1_FALLING, T1_RISING };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 15, Arduino port: D9
    TOGGLE_A_ON_COMPARE  = bit (COM1A0), 
    CLEAR_A_ON_COMPARE   = bit (COM1A1), 
    SET_A_ON_COMPARE     = bit (COM1A0) | bit (COM1A1),

    // pin 16, Arduino port: D10
    TOGGLE_B_ON_COMPARE  = bit (COM1B0), 
    CLEAR_B_ON_COMPARE   = bit (COM1B1), 
    SET_B_ON_COMPARE     = bit (COM1B0) | bit (COM1B1),
  };

  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 15)  // sanity check
    return;

  // reset existing flags
  TCCR1A = 0;
  TCCR1B = 0;

  TCCR1A |= (Modes [mode] [0]) | port;  
  TCCR1B |= (Modes [mode] [1]) | clock;
  }  // end of Timer1::setMode

}  // end of namespace Timer1 

/* ---------------------------------------------------------------
 Timer 2 setup
 --------------------------------------------------------------- */

namespace Timer2 
{
  // TCCR2A, TCCR2B
  const byte Modes [8] [2] = 
  {

  { 0,                         0 },            // 0: Normal, top = 0xFF
  { bit (WGM20),               0 },            // 1: PWM, Phase-correct, top = 0xFF
  {               bit (WGM21), 0 },            // 2: CTC, top = OCR2A
  { bit (WGM20) | bit (WGM21), 0 },            // 3: Fast PWM, top = 0xFF
  { 0,                         bit (WGM22) },  // 4: Reserved
  { bit (WGM20),               bit (WGM22) },  // 5: PWM, Phase-correct, top = OCR2A
  {               bit (WGM21), bit (WGM22) },  // 6: Reserved
  { bit (WGM20) | bit (WGM21), bit (WGM22) },  // 7: Fast PWM, top = OCR2A

  };  // end of Timer2::Modes

  // Activation
  enum { NO_CLOCK, PRESCALE_1, PRESCALE_8, PRESCALE_32, PRESCALE_64, PRESCALE_128, PRESCALE_256, PRESCALE_1024 };

  // what ports to toggle on timer fire
  enum { NO_PORT = 0, 

    // pin 17, Arduino port: D11
    TOGGLE_A_ON_COMPARE  = bit (COM2A0), 
    CLEAR_A_ON_COMPARE   = bit (COM2A1), 
    SET_A_ON_COMPARE     = bit (COM2A0) | bit (COM2A1),

    // pin 5, Arduino port: D3
    TOGGLE_B_ON_COMPARE  = bit (COM2B0), 
    CLEAR_B_ON_COMPARE   = bit (COM2B1), 
    SET_B_ON_COMPARE     = bit (COM2B0) | bit (COM2B1),
  };


  // choose a timer mode, set which clock speed, and which port to toggle
  void setMode (const byte mode, const byte clock, const byte port)
  {
  if (mode < 0 || mode > 7)  // sanity check
    return;

  // reset existing flags
  TCCR2A = 0;
  TCCR2B = 0;
  TimerHelpers.h
  TCCR2A |= (Modes [mode] [0]) | port;  
  TCCR2B |= (Modes [mode] [1]) | clock;
  }  // end of Timer2::setMode

}  // end of namespace Timer2 

#endif

Ссылки

Ник Гаммон
источник
Только один быстрый ответ на вопрос. Что я должен искать, чтобы получить соединение для кабеля VGA?
Терри
@ Терри "VGA гнездовой разъем" (гнездовой разъем означает, что вы подключаете штекерный разъем)
Avamander
3

Быстрый поиск Google для "Arduino VGA" даст вам много информации. Существует несколько вариантов схем и программ, которые также различаются по разрешению и глубине цвета.

Я искал это несколько дней назад, и это мои любимые (пока):

Если использование телевизора также является вероятным вариантом, проверьте библиотеку Arduino TV out. Он может быть установлен непосредственно из Arduino IDE и имеет хорошую демонстрацию.

Джордано Бруно
источник
2

Отсутствие необходимости отображать реальное изображение существенно упрощает ситуацию, поскольку Arduino не хватает памяти и (за исключением грубого смысла) пропускной способности для этого.

Однако вы не можете просто подать постоянное аналоговое напряжение на линии R, G и B. Мало того, что вы должны управлять сигналами горизонтальной и вертикальной синхронизации, вы должны очищать сигналы RGB, когда они не находятся на активной части экрана, в противном случае монитор будет считать, что их постоянное напряжение означает «черный», а ваши цвета будут работать только как короткое мигание, когда ваше устройство впервые подключено или включено.

Создание большого прямоугольного поля цвета из Arduino, вероятно, будет довольно сложной задачей, но, вероятно, не невозможно. Вы можете использовать аппаратные каналы ШИМ для горизонтального и «цветного включения» и жестко закодированные программные счетчики для вертикального аспекта. Затем вы можете использовать «включение цвета», чтобы управлять сетью потенциально переменных резисторов, чтобы установить один цвет, представляющий особый интерес.

Крис Страттон
источник